×

\(\mathrm{AdS}_3\) solutions in massive IIA with small \(\mathcal{N} = (4, 0)\) supersymmetry. (English) Zbl 1434.83164

Summary: We study \(\mathrm{AdS}_3 \times S^2\) solutions in massive IIA that preserve small \(\mathcal{N} = (4, 0)\) supersymmetry in terms of an SU(2)-structure on the remaining internal space. We find two new classes of solutions that are warped products of the form \(\mathrm{AdS}_3 \times S^2 \times M_4 \times \mathbb{R}\). For the first, \(M_4=CY_2\) and we find a generalisation of a D4-D8 system involving possible additional branes. For the second, \(M_4\) need only be Kahler, and we find a generalisation of the T-dual of solutions based on D3-branes wrapping curves in the base of an elliptically fibered Calabi-Yau 3-fold. Within these classes we find many new locally compact solutions that are foliations of \(\mathrm{AdS}_3 \times S^2 \times CY_2\) over an interval, bounded by various D brane and O plane behaviours. We comment on how these local solutions may be used as the building blocks of infinite classes of global solutions glued together with defect branes. Utilising T-duality we find two new classes of \(\mathrm{AdS}_3 \times S^3 \times M_4\) solutions in IIB. The first backreacts D5s and KK monopoles on the D1-D5 near horizon. The second is a generalisation of the solutions based on D3-branes wrapping curves in the base of an elliptically fibered \(CY_3\) that includes non trivial 3-form flux.

MSC:

83E50 Supergravity
81T60 Supersymmetric field theories in quantum mechanics
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
83E15 Kaluza-Klein and other higher-dimensional theories
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] P. DiFrancesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer (1997)
[2] J.M. Maldacena and H. Ooguri, Strings in AdS_3and SL(2, ℝ) WZW model. I: The Spectrum, J. Math. Phys.42 (2001) 2929 [hep-th /0001053] [INSPIRE]. · Zbl 1036.81033
[3] J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS_3and the SL(2, ℝ) WZW model. Part 2. Euclidean black hole, J. Math. Phys.42 (2001) 2961 [hep-th /0005183] [INSPIRE]. · Zbl 1036.81034
[4] J.M. Maldacena, The LargeN limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE]. · Zbl 0914.53047
[5] A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS_3, Adv. Theor. Math. Phys.2 (1998) 733 [hep-th/9806194] [INSPIRE]. · Zbl 1041.81575
[6] S. Hampton, S.D. Mathur and I.G. Zadeh, Lifting of D1-D5-P states, JHEP01 (2019) 075 [arXiv:1804.10097] [INSPIRE]. · Zbl 1409.81122
[7] M.R. Gaberdiel and R. Gopakumar, Tensionless string spectra on AdS_3, JHEP05 (2018) 085 [arXiv:1803.04423] [INSPIRE]. · Zbl 1391.81160
[8] G. Giribet, C. Hull, M. Kleban, M. Porrati and E. Rabinovici, Superstrings on AdS_3at k = 1, JHEP08 (2018) 204 [arXiv:1803.04420] [INSPIRE]. · Zbl 1396.83049
[9] L. Eberhardt, M.R. Gaberdiel and R. Gopakumar, The Worldsheet Dual of the Symmetric Product CFT, JHEP04 (2019) 103 [arXiv:1812.01007] [INSPIRE]. · Zbl 1415.83055
[10] L. Eberhardt and M.R. Gaberdiel, String theory on AdS_3and the symmetric orbifold of Liouville theory, Nucl. Phys.B 948 (2019) 114774 [arXiv:1903.00421] [INSPIRE]. · Zbl 1435.81159
[11] C.A. Keller and I.G. Zadeh, Lifting \(\frac{1}{4} \)-BPS States on K3 and Mathieu Moonshine,arXiv:1905.00035 [INSPIRE]. · Zbl 1441.83021
[12] D. Kutasov, F. Larsen and R.G. Leigh, String theory in magnetic monopole backgrounds, Nucl. Phys.B 550 (1999) 183 [hep-th/9812027] [INSPIRE]. · Zbl 0947.81078
[13] Y. Sugawara, N = (0, 4) quiver SCFT2 and supergravity on AdS_3 x S^2, JHEP06 (1999) 035 [hep-th/9903120] [INSPIRE].
[14] F. Larsen and E.J. Martinec, Currents and moduli in the (4, 0) theory, JHEP11 (1999) 002 [hep-th/9909088] [INSPIRE]. · Zbl 0957.81042
[15] K. Okuyama, D1-D5 on ALE space, JHEP12 (2005) 042 [hep-th/0510195] [INSPIRE].
[16] M.R. Douglas, Gauge fields and D-branes, J. Geom. Phys.28 (1998) 255 [hep-th/9604198] [INSPIRE]. · Zbl 1057.81546
[17] J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP12 (1997) 002 [hep-th/9711053] [INSPIRE]. · Zbl 0951.83034
[18] C. Vafa, Black holes and Calabi- Yau threefolds, Adv. Theor. Math. Phys.2 (1998) 207 [hep-th/9711067] [INSPIRE]. · Zbl 0956.83029
[19] R. Minasian, G.W. Moore and D. Tsimpis, Calabi- Yau black holes and (0, 4) σ-models, Commun. Math. Phys.209 (2000) 325 [hep-th/9904217] [INSPIRE]. · Zbl 0960.83022
[20] A. Castro, J.L. Davis, P. Kraus and F. Larsen, String Theory Effects on Five-Dimensional Black Hole Physics, Int. J. Mod. Phys.A 23 (2008) 613 [arXiv:0801.1863] [INSPIRE]. · Zbl 1162.83009
[21] B. Haghighat, S. Murthy, C. Vafa and S. Vandoren, F- Theory, Spinning Black Holes and Multi-string Branches, JHEP01 (2016) 009 [arXiv:1509.00455] [INSPIRE]. · Zbl 1388.83817
[22] C. Couzens, H.h. Lam, K. Mayer and S. Vandoren, Black Holes and (0, 4) SCFTs from Type JIB on K3, JHEP08 (2019) 043 [arXiv:1904.05361] [INSPIRE]. · Zbl 1421.83057
[23] B. Haghighat, A. Iqbal, C. Kozgaz, G. Lockhart and C. Vafa, M-Strings, Commun. Math. Phys.334 (2015) 779 [arXiv:1305.6322] [INSPIRE].
[24] B. Haghighat, C. Kozgaz, G. Lockhart and C. Vafa, Orbifolds of M-strings, Phys. Rev.D 89 (2014) 046003 [arXiv:1310.1185] [INSPIRE].
[25] J. Kim, S. Kim and K. Lee, Little strings and T-duality, JHEP02 (2016) 170 [arXiv:1503.07277] [INSPIRE]. · Zbl 1388.81560
[26] A. Gadde, B. Haghighat, J. Kim, S. Kim, G. Lockhart and C. Vafa, 6d String Chains, JHEP02 (2018) 143 [arXiv:1504.04614] [INSPIRE].
[27] C. Lawrie, S. Schäfer-Nameki and T. Weigand, Chiral 2d theories from N = 4 SYM with varying coupling, JHEP04 (2017) 111 [arXiv:1612.05640] [INSPIRE]. · Zbl 1378.81141
[28] C. Couzens, C. Lawrie, D. Martelli, S. SchaJer-Nameki and J.-M. Wong, F-theory and AdS_3/CFT_2, JHEP08 (2017) 043 [arXiv:1705.04679] [INSPIRE].
[29] E.S. Fradkin and V.Y. Linetsky, Results of the classification of superconformal algebras in two-dimensions, Phys. Lett.B 282 (1992) 352 [hep-th/9203045] [INSPIRE]. · Zbl 0968.81521
[30] A. Hanany and T. Okazaki, (0, 4) brane box models, JHEP03 (2019) 027 [arXiv:1811.09117] [INSPIRE]. · Zbl 1414.81244
[31] N. Kim, AdS_3solutions of JIB supergravity from D3-branes, JHEP01 (2006) 094 [hep-th/0511029] [INSPIRE].
[32] J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, Supersymmetric AdS_3solutions of type JIB supergravity, Phys. Rev. Lett.97 (2006) 171601 [hep-th/0606221] [INSPIRE]. · Zbl 1228.83112
[33] J.P. Gauntlett, N. Kim and D. Waldram, Supersymmetric AdS_3, AdS_2and Bubble Solutions, JHEP04 (2007) 005 [hep-th/0612253] [INSPIRE].
[34] N. Kim, The Backreacted Káhler Geometry of Wrapped Branes, Phys. Rev.D 86 (2012) 067901 [arXiv:1206.1536] [INSPIRE].
[35] Ö. Kelekci, Y. Lozano, J. Montero, E. Ó Colgáin and M. Park, Large superconformal near-horizons from M-theory, Phys. Rev.D 93 (2016) 086010 [arXiv:1602.02802] [INSPIRE].
[36] L. Eberhardt, Supersymmetric AdS_3supergravity backgrounds and holography, JHEP02 (2018) 087 [arXiv:1710.09826] [INSPIRE]. · Zbl 1387.83102
[37] C. Couzens, D. Martelli and S. 8chäfer-Nameki, F-theory and AdS_3/CFT_2 (2, 0), JHEP06 (2018) 008 [arXiv:1712.07631] [INSPIRE].
[38] G. Dibitetto, G. Lo Monaco, A. Passias, N. Petri and A. Tomasiello, AdS_3Solutions with Exceptional Super symmetry, Fortsch. Phys.66 (2018) 1800060 [arXiv:1807.06602] [INSPIRE].
[39] N.T. Macpherson, Type II solutions on AdS_3 x S^3 x S^3with large superconformal symmetry, JHEP05 (2019) 089 [arXiv:1812.10172] [INSPIRE].
[40] N.S. Deger, C. Eloy and H. 8amtleben, \( \mathcal{N} \) = (8, 0) AdS vacua of three-dimensional supergravity, JHEP10 (2019) 145 [arXiv:1907.12764] [INSPIRE].
[41] H. Kim, K.K. Kim and N. Kim, 1/4-BPS M-theory bubbles with 80(3) X 80(4) symmetry, JHEP 08 (2007) 050 [arXiv:0706.2042] [INSPIRE]. · Zbl 1326.81160
[42] E. Ó Colgáin, J.-B. Wu and H. Yavartanoo, Supersymmetric AdS_3 x S^2M-theory geometries with fluxes, JHEP08 (2010) 114 [arXiv:1005.4527] [INSPIRE]. · Zbl 1290.81109
[43] N.T. Macpherson and A. Tomasiello, Minimal flux Minkowski classification, JHEP09 (2017) 126 [arXiv:1612.06885] [INSPIRE]. · Zbl 1382.81188
[44] N.T. Macpherson, J. Montero and D. Prins, Mink_3 x S^3solutions of type- II supergravity, Nucl. Phys.B 933 (2018) 185 [arXiv:1712.00851] [INSPIRE]. · Zbl 1395.83129
[45] F. Apruzzi, J.C. Geipel, A. Legramandi, N.T. Macpherson and M. Zagermann, Minkowski_4 x S^2solutions of JIB supergravity, Fortsch. Phys.66 (2018) 1800006 [arXiv:1801.00800] [INSPIRE].
[46] G.B. DeLuca, G.L. Monaco, N.T. Macpherson, A. Tomasiello and O. Varela, The geometry of \(\mathcal{N} = 3\) AdS_4in massive IIA, JHEP08 (2018) 133 [arXiv:1805.04823] [INSPIRE]. · Zbl 1396.83060
[47] A. Legramandi and N.T. Macpherson, Mink_4 x S^2Solutions of 10 and 11 dimensional supergravity, JHEP07 (2019) 134 [arXiv:1811.11224] [INSPIRE]. · Zbl 1418.83072
[48] A. Passias, D. Prins and A. Tomasiello, A massive class of \(\mathcal{N} = 2\) AdS_4IIA solutions, JHEP10 (2018) 071 [arXiv:1805.03661] [INSPIRE]. · Zbl 1402.83109
[49] S. Beck, U. Gran, J. Gutowski and G. Papadopoulos, All Killing Superalgebras for Warped AdS Backgrounds, JHEP12 (2018) 047 [arXiv:1710.03713] [INSPIRE]. · Zbl 1405.83070
[50] A. Sevrin, W. Troost and A. Van Proeyen, Superconformal Algebras in Two-Dimensions with N = 4, Phys. Lett.B 208 (1988) 447 [INSPIRE].
[51] D. Prins and D. Tsimpis, Type IIA supergravity and M -theory on manifolds with SU(4) structure, Phys. Rev.D 89 (2014) 064030 [arXiv:1312.1692] [INSPIRE].
[52] D. Lüst, P. Patalong and D. Tsimpis, Generalized geometry, calibrations and supersymmetry in diverse dimensions, JHEP01 (2011) 063 [arXiv:1010.5789] [INSPIRE]. · Zbl 1214.81158
[53] A. Legramandi, L. Martucci and A. Tomasiello, Timelike structures of ten-dimensional supersymmetry, JHEP04 (2019) 109 [arXiv:1810.08625] [INSPIRE]. · Zbl 1415.83059
[54] F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS_7solutions of type-II supergravity, JHEP04 (2014) 064 [arXiv:1309.2949] [INSPIRE].
[55] D. Youm, Partially localized intersecting BPS branes, Nucl. Phys.B 556 (1999) 222 [hep-th/9902208] [INSPIRE]. · Zbl 0955.81055
[56] K. Sfetsos and D.C. Thompson, On non-abelian T-dual geometries with Ramond fluxes, Nucl. Phys.B 846 (2011) 21 [arXiv:1012.1320] [INSPIRE]. · Zbl 1208.81173
[57] Y. Lozano and C. Núñez , Field theory aspects of non-Abelian T-duality and \(\mathcal{N} = 2\) linear quivers, JHEP05 (2016) 107 [arXiv:1603.04440] [INSPIRE]. · Zbl 1388.83299
[58] Y. Lozano, N.T. Macpherson, J. Montero and C. Núñez, Three-dimensional \(\mathcal{N} = 4\) linear quivers and non-Abelian T-duals, JHEP11 (2016) 133 [arXiv:1609. 09061] [INSPIRE]. · Zbl 1390.83121
[59] Y. Lozano, C. Núñez and S. Zacarias, BMN Vacua, Superstars and Non-Abelian T-duality, JHEP09 (2017) 008 [arXiv:1703.00417] [INSPIRE]. · Zbl 1382.81187
[60] Y. Lozano, N.T. Macpherson and J. Montero, AdS_6T-duals and type JIB AdS_6 x S^2geometries with 7-branes, JHEP01 (2019) 116 [arXiv:1810.08093] [INSPIRE].
[61] Ö. Kelekci, Y. Lozano, N.T. Macpherson and E. Ó Colgáin, Supersymmetry and non-Abelian T-dualit y in type-II supergravity, Class. Quant. Grav.32 (2015) 035014 [arXiv:1409.7406] [INSPIRE]. · Zbl 1312.83033
[62] Y. Lozano, N.T. Macpherson, C. Núñez and A. Ramirez, Two dimensional \(\mathcal{N} \) = (0, 4) quivers dual to AdS_3solutions in massive IIA,arXiv:1909.10510 [INSPIRE]. · Zbl 1434.83023
[63] L. Bedulli and L. Vezzoni, Torsion of SU(2)-structures and Ricci curvature in dimension 5, Differ. Geom. Appl.27 (2009) 85 [math.DG/0702790v3] [INSPIRE]. · Zbl 1204.53018
[64] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS_5solutions of M-theory, Class. Quant. Grav.21 (2004) 4335 [hep-th/0402153] [INSPIRE]. · Zbl 1059.83038
[65] F. Apruzzi, M. Fazzi, A. Passias and A. Tomasiello, Supersymmetric AdS_5solutions of massive IIA supergravity, JHEP06 (2015) 195 [arXiv:1502.06620] [INSPIRE]. · Zbl 1388.83723
[66] A. Rota and A. Tomasiello, AdS_4compactifications of AdS_7solutions in type-II supergravity, JHEP07 (2015) 076 [arXiv:1502.06622] [INSPIRE]. · Zbl 1388.83878
[67] Y. Lozano, N.T. Macpherson, C. Núñez and A. Ramirez, 1/4 BPS AdS_3/CFT_2,arXiv:1909.09636 [INSPIRE].
[68] Y. Lozano, N.T. Macpherson, C. Núñez and A. Ramirez, AdS_3solutions in massive IIA, defect CFTs and T-duality, JHEP12 (2019) 013 [arXiv:1909.11669] [INSPIRE]. · Zbl 1431.83180
[69] F. Apruzzi, M. Fazzi, A. Passias, A. Rota and A. Tomasiello, Six-Dimensional Superconformal Theories and their Compactifications from Type IIA Supergravity, Phys. Rev. Lett.115 (2015) 061601 [arXiv:1502.06616] [INSPIRE]. · Zbl 1388.83723
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.