Bobkov, Vladimir; Tanaka, Mieko On the Fredholm-type theorems and sign properties of solutions for \((p, q)\)-Laplace equations with two parameters. (English) Zbl 1435.35183 Ann. Mat. Pura Appl. (4) 198, No. 5, 1651-1673 (2019). The authors consider the Dirichlet problem for the nonhomogeneous \((p,q)\)-Laplacian equation in a bounded domain in \(\mathbb{R}^N\), \(N\geq 1\). Three existence and multiplicity theorems and two sign property results for the solutions are proved using variational methods. The proofs are complete and nonstandard. They are based on interesting energy estimates and linking arguments. Reviewer: Stepan Agop Tersian (Rousse) Cited in 2 Documents MSC: 35J92 Quasilinear elliptic equations with \(p\)-Laplacian 35J20 Variational methods for second-order elliptic equations 35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs 35B50 Maximum principles in context of PDEs Keywords:\((p, q)\)-Laplacian; Fredholm alternative; existence of solutions; positive solutions; maximum principle; linking method × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Alama, S.; Tarantello, G., Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal., 141, 1, 159-215 (1996) · Zbl 0860.35032 · doi:10.1006/jfan.1996.0125 [2] Allegretto, W.; Huang, Y., A Picone’s identity for the \(p\)-Laplacian and applications, Nonlinear Anal. Theory Methods Appl, 32, 7, 819-830 (1998) · Zbl 0930.35053 · doi:10.1016/S0362-546X(97)00530-0 [3] Ambrosetti, A.; Brezis, H.; Cerami, G., Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122, 2, 519-543 (1994) · Zbl 0805.35028 · doi:10.1006/jfan.1994.1078 [4] Anane, A.: Simplicité et isolation de la premiere valeur propre du \(p\)-laplacien avec poids. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 305(16), 725-728 (1987). http://gallica.bnf.fr/ark:/12148/bpt6k57447681/f27 · Zbl 0633.35061 [5] Averna, D.; Motreanu, D.; Tornatore, E., Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence, Appl. Math. Lett., 61, 102-107 (2016) · Zbl 1347.35121 · doi:10.1016/j.aml.2016.05.009 [6] Bobkov, V.; Tanaka, M., On positive solutions for \((p, q)\)-Laplace equations with two parameters, Calc. Var. Partial Differ. Equ., 54, 3, 3277-3301 (2015) · Zbl 1328.35052 · doi:10.1007/s00526-015-0903-5 [7] Bobkov, V.; Tanaka, M., On sign-changing solutions for \((p, q)\)-Laplace equations with two parameters, Adv. Nonlinear Anal. (2016) · Zbl 1419.35071 · doi:10.1515/anona-2016-0172 [8] Bobkov, V.; Tanaka, M., Remarks on minimizers for \((p, q)\)-Laplace equations with two parameters, Commun. Pure Appl. Anal., 17, 3, 1219-1253 (2018) · Zbl 1400.35145 · doi:10.3934/cpaa.2018059 [9] Chang, Kc, Infinite dimensional morse theory and multiple solution problems, Birkhäuser (1993) · Zbl 0779.58005 · doi:10.1007/978-1-4612-0385-8 [10] Chaves, Mf; Ercole, G.; Miyagaki, Oh, Existence of a nontrivial solution for the \((p, q)\)-Laplacian in \(\mathbb{R}^N\) without the Ambrosetti-Rabinowitz condition, Nonlinear Anal. Theory Methods Appl., 114, 133-141 (2015) · Zbl 1308.35114 · doi:10.1016/j.na.2014.11.010 [11] Clément, P.; Peletier, La, An anti-maximum principle for second-order elliptic operators, J. Differ. Equ., 34, 2, 218-229 (1979) · Zbl 0387.35025 · doi:10.1016/0022-0396(79)90006-8 [12] Drábek, P.: Geometry of the energy functional and the Fredholm alternative for the \(p\)-Laplacian in higher dimensions. In: Electronic Journal of Differential Equations, Conference 08, 103-120. (2002) https://ejde.math.txstate.edu/conf-proc/08/d1/drabek.pdf · Zbl 1114.35318 [13] Drábek, P., Girg, P., Takáč, P., Ulm, M.: The Fredholm alternative for the \(p\)-Laplacian: bifurcation from infinity, existence and multiplicity. Indiana Univ. Math. J. 53(2), 433-482. (2004) http://www.jstor.org/stable/24903516 · Zbl 1081.35031 [14] Drábek, P.; Robinson, Sb, Resonance problems for the \(p\)-Laplacian, J. Funct. Anal., 169, 1, 189-200 (1999) · Zbl 0940.35087 · doi:10.1006/jfan.1999.3501 [15] Dugundji, J.: An extension of Tietze’s theorem. Pac. J. Math. 1(3), 353-367 (1951). https://projecteuclid.org/euclid.pjm/1103052106 · Zbl 0043.38105 [16] Il’Yasov, Y., On positive solutions of indefinite elliptic equations, Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 333, 6, 533-538 (2001) · Zbl 0987.35065 · doi:10.1016/S0764-4442(01)01924-3 [17] Il’Yasov, Ys, Bifurcation calculus by the extended functional method, Funct. Anal. Appl., 41, 1, 18-30 (2007) · Zbl 1124.35307 · doi:10.1007/s10688-007-0002-2 [18] Filippakis, M.E., Papageorgiou, N.S.: Resonant \((p,q)\)-equations with Robin boundary condition. Electron. J. Differ. Equ. 2018(1), 1-24 (2018). https://ejde.math.txstate.edu/Volumes/2018/01/filippakis.pdf · Zbl 1384.35038 [19] Fleckinger, J., Gossez, J.-P., Takáč, P., & de Thélin, F.: Existence, nonexistence et principe de l’antimaximum pour le \(p\)-laplacien. Comptes rendus de l’Académie des sciences. Série 1, Mathématique, 321(6), 731-734 (1995) http://gallica.bnf.fr/ark:/12148/bpt6k62037127/f81 · Zbl 0840.35016 [20] Fleckinger-Pellé J., Takáč, P.: An improved Poincaré inequality and the \(p\)-Laplacian at resonance for \(p>2\). Adv. Differ. Equ. 7(8), 951-971. http://projecteuclid.org/euclid.ade/1356651685 · Zbl 1208.35049 [21] Fučík, S.; Nečas, J.; Souček, J.; Souček, V., Spectral Analysis of Nonlinear Operators (2006), New York: Springer, New York · Zbl 0268.47056 [22] Lieberman, Gm, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. Theory Methods Appl., 12, 11, 1203-1219 (1988) · Zbl 0675.35042 · doi:10.1016/0362-546X(88)90053-3 [23] Lieberman, Gm, The natural generalizationj of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations, Commun. Partial Differ. Equ., 16, 2-3, 311-361 (1991) · Zbl 0742.35028 · doi:10.1080/03605309108820761 [24] Marano, S.; Mosconi, S., Some recent results on the Dirichlet problem for \((p, q)\)-Laplace equations, Discrete Contin. Dyn. Syst. Ser. S, 11, 2, 279-291 (2017) · Zbl 1374.35137 · doi:10.3934/dcdss.2018015 [25] Miyajima, S.; Motreanu, D.; Tanaka, M., Multiple existence results of solutions for the Neumann problems via super-and sub-solutions, J. Funct. Anal., 262, 4, 1921-1953 (2012) · Zbl 1276.35086 · doi:10.1016/j.jfa.2011.11.028 [26] Motreanu, D., Tanaka, M.: On a positive solution for \((p,q)\)-Laplace equation with indefinite weight. Minimax Theory Appl. 1, 1-20 (2016). http://www.heldermann-verlag.de/mta/mta01/mta0001-b.pdf · Zbl 1334.35069 [27] Pucci, P.; Serrin, Jb, The Maximum Principle (2007), New York: Springer, New York · Zbl 1134.35001 [28] Takáč, P., On the Fredholm alternative for the \(p\)-Laplacian at the first eigenvalue, Indiana Univ. Math. J., 51, 1, 187-238 (2002) · Zbl 1035.35046 · doi:10.1512/iumj.2002.51.2156 [29] Tanaka, M., Generalized eigenvalue problems for \((p, q)\)-Laplacian with indefinite weight, J. Math. Anal. Appl., 419, 2, 1181-1192 (2014) · Zbl 1294.35051 · doi:10.1016/j.jmaa.2014.05.044 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.