Twisted \(\mathcal{N} = 1\) SCFTs and their \(\mathrm{AdS}_3\) duals. (English) Zbl 1435.83145

Summary: We study compactifications of an infinite family of four-dimensional \(\mathcal{N} = 1\) SCFTs on a Riemann surface in the presence of arbitrary background fluxes for global symmetries. The four-dimensional parent theories have holographic Sasaki-Einstein duals in type IIB string theory. We compute central charges and R-charges of baryonic operators in the resulting two-dimensional \(\mathcal{N} = (0, 2)\) theories in three distinct ways: from the field theory side utilizing c-extremization, its recently discovered geometric dual formulation, and holographically using new \(\mathrm{AdS}_3\) duals of two-dimensional field theories.


83E05 Geometrodynamics and the holographic principle
83E30 String and superstring theories in gravitational theory
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T60 Supersymmetric field theories in quantum mechanics
53Z05 Applications of differential geometry to physics
Full Text: DOI arXiv


[1] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE]. · Zbl 0914.53047
[2] D. Martelli, J. Sparks and S.-T. Yau, The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds, Commun. Math. Phys.268 (2006) 39 [hep-th/0503183] [INSPIRE]. · Zbl 1190.53041
[3] D. Martelli, J. Sparks and S.-T. Yau, Sasaki-Einstein manifolds and volume minimisation, Commun. Math. Phys.280 (2008) 611 [hep-th/0603021] [INSPIRE]. · Zbl 1161.53029
[4] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Sasaki-Einstein metrics on S^2× S^3 , Adv. Theor. Math. Phys.8 (2004) 711 [hep-th/0403002] [INSPIRE]. · Zbl 1136.53317
[5] M. Cvetič, H. Lü, D.N. Page and C.N. Pope, New Einstein-Sasaki spaces in five and higher dimensions, Phys. Rev. Lett.95 (2005) 071101 [hep-th/0504225] [INSPIRE].
[6] F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett.110 (2013) 061601 [arXiv:1211.4030] [INSPIRE]. · Zbl 1390.83325
[7] F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP06 (2013) 005 [arXiv:1302.4451] [INSPIRE]. · Zbl 1390.83325
[8] M. Bershadsky, A. Johansen, V. Sadov and C. Vafa, Topological reduction of 4D SYM to 2D σ-models, Nucl. Phys.B 448 (1995) 166 [hep-th/9501096] [INSPIRE]. · Zbl 1009.58502
[9] M. Bershadsky, C. Vafa and V. Sadov, D-branes and topological field theories, Nucl. Phys.B 463 (1996) 420 [hep-th/9511222] [INSPIRE]. · Zbl 1004.81560
[10] J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys.A 16 (2001) 822 [hep-th/0007018] [INSPIRE]. · Zbl 1005.81075
[11] F. Benini, N. Bobev and P.M. Crichigno, Two-dimensional SCFTs from D3-branes, JHEP07 (2016) 020 [arXiv:1511.09462] [INSPIRE]. · Zbl 1390.83088
[12] A. Amariti, L. Cassia and S. Penati, Surveying 4d SCFTs twisted on Riemann surfaces, JHEP06 (2017) 056 [arXiv:1703.08201] [INSPIRE]. · Zbl 1380.83273
[13] A. Amariti, L. Cassia and S. Penati, c-extremization from toric geometry, Nucl. Phys.B 929 (2018) 137 [arXiv:1706.07752] [INSPIRE]. · Zbl 1382.81146
[14] A. Donos, J.P. Gauntlett and N. Kim, AdS solutions through transgression, JHEP09 (2008) 021 [arXiv:0807.4375] [INSPIRE]. · Zbl 1245.83060
[15] J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, Supersymmetric AdS_3solutions of type IIB supergravity, Phys. Rev. Lett.97 (2006) 171601 [hep-th/0606221] [INSPIRE]. · Zbl 1228.83112
[16] C. Couzens, J.P. Gauntlett, D. Martelli and J. Sparks, A geometric dual of c-extremization, JHEP01 (2019) 212 [arXiv:1810.11026] [INSPIRE]. · Zbl 1409.81143
[17] J.P. Gauntlett, D. Martelli and J. Sparks, Toric geometry and the dual of c-extremization, JHEP01 (2019) 204 [arXiv:1812.05597] [INSPIRE]. · Zbl 1409.81118
[18] J.P. Gauntlett, D. Martelli and J. Sparks, Fibred GK geometry and supersymmetric AdS solutions, JHEP11 (2019) 176 [arXiv:1910.08078] [INSPIRE]. · Zbl 1429.83010
[19] F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS_4from supersymmetric localization, JHEP05 (2016) 054 [arXiv:1511.04085] [INSPIRE]. · Zbl 1388.83388
[20] S.M. Hosseini and A. Zaffaroni, Large N matrix models for 3d \(\mathcal{N} = 2\) theories: twisted index, free energy and black holes, JHEP08 (2016) 064 [arXiv:1604.03122] [INSPIRE]. · Zbl 1390.83345
[21] J.P. Gauntlett, D. Martelli and J. Sparks, Toric geometry and the dual of I -extremization, JHEP06 (2019) 140 [arXiv:1904.04282] [INSPIRE]. · Zbl 1416.81155
[22] S.M. Hosseini and A. Zaffaroni, Geometry of I -extremization and black holes microstates, JHEP07 (2019) 174 [arXiv:1904.04269] [INSPIRE]. · Zbl 1418.83026
[23] H. Kim and N. Kim, Black holes with baryonic charge and I -extremization, JHEP11 (2019) 050 [arXiv:1904.05344] [INSPIRE]. · Zbl 1429.83039
[24] S.M. Hosseini and A. Zaffaroni, Proving the equivalence of c-extremization and its gravitational dual for all toric quivers, JHEP03 (2019) 108 [arXiv:1901.05977] [INSPIRE]. · Zbl 1414.81208
[25] P. Karndumri and E. O Colgain, Supergravity dual of c-extremization, Phys. Rev.D 87 (2013) 101902 [arXiv:1302.6532] [INSPIRE]. · Zbl 1342.83486
[26] P. Karndumri and E.O. Colgáin, 3D supergravity from wrapped D3-branes, JHEP10 (2013) 094 [arXiv:1307.2086] [INSPIRE]. · Zbl 1342.83486
[27] S. Benvenuti and M. Kruczenski, From Sasaki-Einstein spaces to quivers via BPS geodesics: L**p,q—r, JHEP04 (2006) 033 [hep-th/0505206] [INSPIRE].
[28] S. Franco et al., Gauge theories from toric geometry and brane tilings, JHEP01 (2006) 128 [hep-th/0505211] [INSPIRE].
[29] A. Butti, D. Forcella and A. Zaffaroni, The dual superconformal theory for L^pqrmanifolds, JHEP09 (2005) 018 [hep-th/0505220] [INSPIRE].
[30] S. Benvenuti et al., An Infinite family of superconformal quiver gauge theories with Sasaki-Einstein duals, JHEP06 (2005) 064 [hep-th/0411264] [INSPIRE].
[31] N. Kim, AdS_3solutions of IIB supergravity from D3-branes, JHEP01 (2006) 094 [hep-th/0511029] [INSPIRE].
[32] D. Martelli and J. Sparks, Toric Sasaki-Einstein metrics on S^2× S^3 , Phys. Lett.B 621 (2005) 208 [hep-th/0505027] [INSPIRE]. · Zbl 1247.53055
[33] V. Apostolov, D.M. Calderbank and P. Gauduchon, The geometry of weakly selfdual K¨ahler surfaces, math/0104233.
[34] J.P. Gauntlett and N. Kim, Geometries with Killing spinors and supersymmetric AdS solutions, Commun. Math. Phys.284 (2008) 897 [arXiv:0710.2590] [INSPIRE]. · Zbl 1179.53078
[35] J.P. Gauntlett, N. Kim and D. Waldram, Supersymmetric AdS_3, AdS_2and bubble solutions, JHEP04 (2007) 005 [hep-th/0612253] [INSPIRE].
[36] J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, New supersymmetric AdS_3solutions, Phys. Rev.D 74 (2006) 106007 [hep-th/0608055] [INSPIRE]. · Zbl 1228.83112
[37] N. Kim, The backreacted Kähler geometry of wrapped branes, Phys. Rev.D 86 (2012) 067901 [arXiv:1206.1536] [INSPIRE].
[38] C. Couzens et al., F-theory and AdS_3/CFT_2 , JHEP08 (2017) 043 [arXiv:1705.04679] [INSPIRE].
[39] C. Couzens, D. Martelli and S. Schäfer-Nameki, F-theory and AdS_3/CFT_2 (2, 0), JHEP06 (2018) 008 [arXiv:1712.07631] [INSPIRE]. · Zbl 1395.81211
[40] L. Eberhardt, Supersymmetric AdS_3supergravity backgrounds and holography, JHEP02 (2018) 087 [arXiv:1710.09826] [INSPIRE]. · Zbl 1387.83102
[41] H. Het Lam and S. Vandoren, BPS solutions of six-dimensional (1, 0) supergravity coupled to tensor multiplets, JHEP06 (2018) 021 [arXiv:1804.04681] [INSPIRE]. · Zbl 1395.83134
[42] N.T. Macpherson, Type II solutions on AdS_3× S^3× S^3with large superconformal symmetry, JHEP05 (2019) 089 [arXiv:1812.10172] [INSPIRE].
[43] A. Passias and D. Prins, On AdS_3solutions of type IIB, arXiv:1910.06326 [INSPIRE].
[44] C. Couzens, \( \mathcal{N} \) = (0, 2) AdS_3solutions of type IIB and F-theory with generic fluxes, arXiv:1911.04439 [INSPIRE].
[45] Y. Bea et al., Compactifications of the Klebanov-Witten CFT and new AdS_3backgrounds, JHEP05 (2015) 062 [arXiv:1503.07527] [INSPIRE].
[46] Y. Lozano, N.T. Macpherson, J. Montero and E.O. Colgáin, New AdS_3× S^2T-duals with \(\mathcal{N} \) = (0, 4) supersymmetry, JHEP08 (2015) 121 [arXiv:1507.02659] [INSPIRE]. · Zbl 1388.81861
[47] G. Dibitetto et al., AdS_3solutions with exceptional supersymmetry, Fortsch. Phys.66 (2018) 1800060 [arXiv:1807.06602] [INSPIRE].
[48] Y. Lozano, N.T. Macpherson, C. Núñez and A. Ramirez, AdS_3solutions in Massive IIA with small \(\mathcal{N} \) = (4, 0) supersymmetry, JHEP01 (2020) 129 [arXiv:1908.09851] [INSPIRE].
[49] Y. Lozano, N.T. Macpherson, C. Nún˜ez and A. Ramirez, 1/4 BPS solutions and the AdS_3/CFT_2correspondence, Phys. Rev.D 101 (2020) 026014 [arXiv:1909.09636] [INSPIRE].
[50] Y. Lozano, N.T. Macpherson, C. Núñez and A. Ramirez, Two dimensional \(\mathcal{N} \) = (0, 4) quivers dual to AdS_3solutions in massive IIA, JHEP01 (2020) 140 [arXiv:1909.10510] [INSPIRE].
[51] Y. Lozano, N.T. Macpherson, C. Núñez and A. Ramirez, AdS_3solutions in massive IIA, defect CFTs and T-duality, JHEP12 (2019) 013 [arXiv:1909.11669] [INSPIRE]. · Zbl 1431.83180
[52] K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys.B 667 (2003) 183 [hep-th/0304128] [INSPIRE]. · Zbl 1059.81602
[53] M. Abreu, Kähler geometry of toric manifolds in symplectic coordinates, math/0004122. · Zbl 1044.53051
[54] N. Bobev and P.M. Crichigno, Universal RG flows across dimensions and holography, JHEP12 (2017) 065 [arXiv:1708.05052] [INSPIRE]. · Zbl 1383.81186
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.