×

Exponential sum approximation for Mittag-Leffler function and its application to fractional Zener wave equation. (English) Zbl 1436.65023

Summary: The Mittag-Leffler function (MLF) is fundamental to solving fractional calculus problems. An exponential sum approximation for the single-parameter MLF with negative input is proposed. Analysis shows that the approximation, which is based on the Gauss-Legendre quadrature, converges uniformly for all non-positive input. The application to modelling of wave propagation in viscoelastic material with the finite element method is also presented. The propagation speed of the solution to the approximated wave equation is proved to have the same upper bound as the original. The discretized scheme, based on the generalised alpha method, involves only a single matrix inverse whose size is the degree of freedom of the geometric model per time step. It is proved that the scheme is unconditionally stable. Furthermore, the solution converges to the true solution at \(O( T^2)\), where \(T\) is the interval each time step, provided that the approximation error of the MLF is sufficiently small.

MSC:

65D32 Numerical quadrature and cubature formulas
74S40 Applications of fractional calculus in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Software:

ML
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aghababa, M. P.; Borjkhani, M., Chaotic fractional-order model for muscular blood vessel and its control via fractional control scheme, Complexity, 20, 37-46 (2014)
[2] Lu, J.-F.; Hanyga, A., Numerical modelling method for wave propagation in a linear viscoelastic medium with singular memory, Geophys. J. Int., 159, 688-702 (2004)
[3] Luchko, Y., Fractional wave equation and damped waves, J. Math. Phys., 54, Article 031505 pp. (2013) · Zbl 1302.35408
[4] Radwan, A. G.; Salama, K. N., Fractional-order RC and RL circuits, Circuits Syst. Signal Process., 31, 1901-1915 (2012)
[5] Yu, Y.; Perdikaris, P.; Karniadakis, G. E., Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms, J. Comput. Phys., 323, 219-242 (2016) · Zbl 1415.74049
[6] Bause, F.; Gravenkamp, H.; Rautenberg, J.; Henning, B., Transient modeling of ultrasonic guided waves in circular viscoelastic waveguides for inverse material characterization, Meas. Sci. Technol., 26, Article 095602 pp. (2015)
[7] Oliveira, D.; Capelas, E.; Machado, T.; António, J., A review of definitions for fractional derivatives and integral, Math. Probl. Eng., 2014, 6 (2014) · Zbl 1407.26013
[8] Yuste, S. B.; Acedo, L., An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42, 1862-1874 (2005) · Zbl 1119.65379
[9] Kamran; Uddin, M.; Ali, A., On the approximation of time-fractional telegraph equations using localized kernel-based method, Adv. Differ. Equ., 2018, Article 305 pp. (2018) · Zbl 1448.65183
[10] Rosenfeld, J. A.; Dixon, W. E., Approximating the Caputo fractional derivative through the Mittag-Leffler reproducing kernel Hilbert space and the kernelized Adams-Bashforth-Moulton method, SIAM J. Numer. Anal., 55, 1201-1217 (2017) · Zbl 1375.26018
[11] Sugiura, H.; Hasegawa, T., Quadrature rule for Abel’s equations: uniformly approximating fractional derivatives, J. Comput. Appl. Math., 223, 459-468 (2009) · Zbl 1156.65109
[12] Lubich, C.; Schädle, A., Fast convolution for nonreflecting boundary conditions, SIAM J. Sci. Comput., 24, 161-182 (2002) · Zbl 1013.65113
[13] Yuan, L.; Agrawal, O. P., A numerical scheme for dynamic systems containing fractional derivatives, J. Vib. Acoust., 124, 321-324 (2002)
[14] Schädle, A.; López-Fernández, M.; Lubich, C., Fast and oblivious convolution quadrature, SIAM J. Sci. Comput., 28, 421-438 (2006) · Zbl 1111.65114
[15] López-Fernández, M.; Lubich, C.; Schädle, A., Adaptive, fast, and oblivious convolution in evolution equations with memory, SIAM J. Sci. Comput., 30, 1015-1037 (2008) · Zbl 1160.65356
[16] Baffet, D., A Gauss-Jacobi kernel compression scheme for fractional differential equations, J. Sci. Comput. (2018)
[17] Li, J., A fast time stepping method for evaluating fractional integrals, SIAM J. Sci. Comput., 31, 4696-4714 (2010) · Zbl 1208.26014
[18] Jiang, S.; Zhang, J.; Zhang, Q.; Zhang, Z., Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21, 650-678 (2017) · Zbl 1488.65247
[19] Baffet, D.; Hesthaven, J. S., A kernel compression scheme for fractional differential equations, SIAM J. Numer. Anal., 55, 496-520 (2017) · Zbl 1359.65106
[20] Wei, Y.; Tse, P. W.; Du, B.; Wang, Y., An innovative fixed-pole numerical approximation for fractional order systems, ISA Trans., 62, 94-102 (2016)
[21] Beylkin, G.; Monzón, L., Approximation by exponential sums revisited, Appl. Comput. Harmon. Anal., 28, 131-149 (2010) · Zbl 1189.65035
[22] McLean, W., Exponential sum approximations for \(t^{- \beta} (2018)\), pp. 911-930 · Zbl 1405.65022
[23] Gorenflo, R.; Kilbas, A. A.; Mainardi, F.; Rogosin, S. V., Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics (2014), Springer: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 1309.33001
[24] Diethelm, K., The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, vol. 2004 (2010), Springer-Verlag: Springer-Verlag Heidelberg, New York, OCLC: ocn648933597 · Zbl 1215.34001
[25] Garrappa, R., Numerical evaluation of two and three parameter Mittag-Leffler functions, SIAM J. Numer. Anal., 53, 1350-1369 (2015) · Zbl 1331.33043
[26] Niedziela, M.; Wlazło, J., Notes on computational aspects of the fractional-order viscoelastic model, J. Eng. Math., 108, 91-105 (2018) · Zbl 1458.74142
[27] Holm, S.; Näsholm, S. P., Comparison of fractional wave equations for power law attenuation in ultrasound and elastography, Ultrasound Med. Biol., 40, 695-703 (2014)
[28] Hermann, V.; Pham, N. D.; Fichtner, A.; Kremers, S.; Huang, L.; Johnson, P.; Larmat, C.; Bunge, H.-P.; Igel, H., Advances in modelling and inversion of seismic wave propagation, (Wagner, S.; Steinmetz, M.; Bode, A.; Müller, M. M., High Performance Computing in Science and Engineering. High Performance Computing in Science and Engineering, Garching/Munich 2009 (2010), Springer: Springer Berlin Heidelberg), 293-306 · Zbl 1202.86003
[29] Atanackovic, T. M., A modified Zener model of a viscoelastic body, Contin. Mech. Thermodyn., 14, 137-148 (2002) · Zbl 1032.74015
[30] Brown, T.; Du, S.; Eruslu, H.; Sayas, F.-J., Analysis of models for viscoelastic wave propagation (2018) · Zbl 1524.35072
[31] Holm, S.; Näsholm, S. P.; Prieur, F.; Sinkus, R., Deriving fractional acoustic wave equations from mechanical and thermal constitutive equations, Comput. Math. Appl., 66, 621-629 (2013) · Zbl 1381.35219
[32] Bagley, R. L.; Torvik, P. J., On the fractional calculus model of viscoelastic behavior, J. Rheol., 30, 133-155 (1986) · Zbl 0613.73034
[33] Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (2010), World Scientific, Google-Books-ID: 3DZ9RuBTHo0C · Zbl 1210.26004
[34] Paris, R., Exponential asymptotics of the Mittag-Leffler function, Proc. R. Soc. Lond., Ser. A: Math. Phys. Eng. Sci., 458, 3041-3052 (2002) · Zbl 1049.33018
[35] Widder, D. V., The Stieltjes transform, Trans. Am. Math. Soc., 43, 7-60 (1938) · Zbl 0018.13102
[36] Donaldson, J.; Elliott, D., A unified approach to quadrature rules with asymptotic estimates of their remainders, SIAM J. Numer. Anal., 9, 573-602 (1972) · Zbl 0264.65020
[37] Gautschi, W.; Varga, R. S., Error bounds for Gaussian quadrature of analytic functions, SIAM J. Numer. Anal., 20, 1170-1186 (1983) · Zbl 0545.41040
[38] Elliott, D., Uniform asymptotic expansions of the Jacobi polynomials and an associated function, Math. Comput., 25, 309-315 (1971) · Zbl 0221.65027
[39] Lether, F. G., Modified quadrature formulas for functions with nearby poles, J. Comput. Appl. Math., 3, 3-9 (1977) · Zbl 0348.65020
[40] Konjik, S.; Oparnica, L.; Zorica, D., Waves in fractional Zener type viscoelastic media, J. Math. Anal. Appl., 365, 259-268 (2010) · Zbl 1185.35280
[41] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method Set (2005), Elsevier, Google-Books-ID: iqfue5Kv2tkC · Zbl 1084.74001
[42] Kadapa, C.; Dettmer, W. G.; Perić, D., On the advantages of using the first-order generalised-alpha scheme for structural dynamic problems, Comput. Struct., 193, 226-238 (2017)
[43] Zhang, J.; Liu, Y.; Liu, D., Accuracy of a composite implicit time integration scheme for structural dynamics, Int. J. Numer. Methods Eng., 109, 368-406 (2017)
[44] Newmark, N. M., A method of computation for structural dynamics, ASCE J. Eng. Mech. Div., 85, 67-94 (1959)
[45] Chung, J.; Hulbert, G. M., A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method, J. Appl. Mech., 60, 371-375 (1993) · Zbl 0775.73337
[46] Erlicher, S.; Bonaventura, L.; Bursi, O. S., The analysis of the generalized-α method for non-linear dynamic problems, Comput. Mech., 28, 83-104 (2002) · Zbl 1146.74327
[47] Jansen, K. E.; Whiting, C. H.; Hulbert, G. M., A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method, Comput. Methods Appl. Mech. Eng., 190, 305-319 (2000) · Zbl 0973.76048
[48] KaiPing, Y., A new family of generalized-α time integration algorithms without overshoot for structural dynamics, Earthq. Eng. Struct. Dyn., 37, 1389-1409 (2008)
[49] Crank, J.; Nicolson, P., A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Adv. Comput. Math., 6, 207-226 (1996) · Zbl 0866.65054
[50] Lax, P. D.; Richtmyer, R. D., Survey of the stability of linear finite difference equations, Commun. Pure Appl. Math., 9, 267-293 (1956) · Zbl 0072.08903
[51] Gamelin, T., Complex Analysis, Undergraduate Texts in Mathematics (2001), Springer-Verlag: Springer-Verlag New York · Zbl 0978.30001
[52] Irons, B. M.; Treharne, G., A bound theorem in eigenvalues and its practical applications, (Proceedings of the 2nd Conference on Matrix Method in Structural Mechanics (1971), Wright-Patterson Air Force Base: Wright-Patterson Air Force Base Ohio), 245-254
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.