×

A diffuse interface method for the Navier-Stokes/Darcy equations: perfusion profile for a patient-specific human liver based on MRI scans. (English) Zbl 1439.76184

Summary: We present a diffuse interface method for coupling free and porous-medium-type flows modeled by the Navier-Stokes and Darcy equations. Its essential component is a diffuse geometry model generated from the phase-field solution of a separate initial boundary value problem that is based on the Allen-Cahn equation. Phase-field approximations of the interface and its gradient are then employed to transfer all interface terms in the coupled variational flow formulation into volumetric terms. This eliminates the need for an explicit interface parametrization between the two flow regimes. We illustrate accuracy and convergence for a series of benchmark examples, using standard low-order stabilized finite element discretizations. Our diffuse interface method is particularly attractive for coupled flow analysis on imaging data with complex implicit interfaces, where procedures for deriving explicit surface parametrizations constitute a significant bottleneck. We demonstrate the potential of our method to establish seamless imaging-through-analysis workflows by computing a perfusion profile for a full-scale 3D human liver based on MRI scans.

MSC:

76Z05 Physiological flows
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
92C55 Biomedical imaging and signal processing

Software:

Netgen; SyFi; FEniCS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beavers, G. S.; Joseph, D. D., Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30, 01, 197-207 (1967)
[2] Saffman, P., On the boundary condition at the interface of a porous medium, Stud. Appl. Math., 50, 93-101 (1971) · Zbl 0271.76080
[3] Jones, I. P., Low Reynolds number flow past a porous spherical shell, (Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 73 (1973)), 231-238 · Zbl 0262.76061
[4] Mikelic, A.; Jäger, W., On the interface boundary condition of Beavers, Joseph, and Saffman, SIAM J. Appl. Math., 60, 4, 1111-1127 (2000) · Zbl 0969.76088
[5] Discacciati, M.; Miglio, E.; Quarteroni, A., Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43, 1, 57-74 (2002) · Zbl 1023.76048
[6] Burman, E.; Hansbo, P., A unified stabilized method for Stokes’ and Darcy’s equations, J. Comput. Appl. Math., 198, 1, 35-51 (2007) · Zbl 1101.76032
[7] Badia, S.; Codina, R., Unified stabilized finite element formulations for the Stokes and the Darcy problems, SIAM J. Numer. Anal., 47, 3, 1971-2000 (2009) · Zbl 1406.76047
[8] Chidyagwai, P.; Rivière, B., On the solution of the coupled Navier-Stokes and Darcy equations, Comput. Methods Appl. Mech. Engrg., 198, 47, 3806-3820 (2009) · Zbl 1230.76023
[9] Layton, W. J.; Schieweck, F.; Yotov, I., Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40, 6, 2195-2218 (2002) · Zbl 1037.76014
[10] Discacciati, M.; Quarteroni, A.; Valli, A., Robin-Robin domain decomposition methods for the Stokes-Darcy coupling, SIAM J. Numer. Anal., 45, 3, 1246-1268 (2007) · Zbl 1139.76030
[11] Chen, W.; Gunzburger, M.; Hua, F.; Wang, X., A parallel Robin-Robin domain decomposition method for the Stokes-Darcy system, SIAM J. Numer. Anal., 49, 3, 1064-1084 (2011) · Zbl 1414.76017
[12] Baber, K.; Mosthaf, K.; Flemisch, B.; Helmig, R.; Müthing, S.; Wohlmuth, B., Numerical scheme for coupling two-phase compositional porous-media flow and one-phase compositional free flow, IMA J. Appl. Math., 77, 6, 887-909 (2012) · Zbl 1343.76024
[13] Discacciati, M.; Quarteroni, A., Navier-Stokes/Darcy coupling: modeling, analysis, and numerical approximation, Rev. Mat. Complut., 22, 2, 315-426 (2009) · Zbl 1172.76050
[14] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2005) · Zbl 1151.74419
[15] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Towards Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[16] Sethian, J. A.; Shan, Y., Solving partial differential equations on irregular domains with moving interfaces, with applications to superconformal electrodeposition in semiconductor manufacturing, J. Comput. Phys., 227, 13, 6411-6447 (2008) · Zbl 1141.82345
[17] Moumnassi, M.; Belouettar, S.; Béchet, E.; Bordas, S. P.A.; Quoirin, D.; Potier-Ferry, M., Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces, Comput. Methods Appl. Mech. Engrg., 200, 5, 774-796 (2011) · Zbl 1225.65111
[18] Joulaian, M.; Düster, A., Local enrichment of the finite cell method for problems with material interfaces, Comput. Mech., 52, 741-762 (2013) · Zbl 1311.74123
[19] Sukumar, N.; Chopp, D. L.; Moës, N.; Belytschko, T., Modeling holes and inclusions by level sets in the extended finite-element method, Comput. Methods Appl. Mech. Engrg., 190, 6183-6200 (2001) · Zbl 1029.74049
[20] Fries, T. P.; Belytschko, T., The generalized/extended finite element method: An overview of the method and its applications, Internat. J. Numer. Methods Engrg., 84, 253-304 (2010) · Zbl 1202.74169
[21] Legrain, G.; Chevaugeon, N.; Dréau, K., High order X-FEM and levelsets for complex microstructures: uncoupling geometry and approximation, Comput. Methods Appl. Mech. Engrg., 241, 172-189 (2012) · Zbl 1353.74071
[22] Liehr, F.; Preusser, T.; Rumpf, M.; Sauter, S.; Schwen, L. O., Composite finite elements for 3D image based computing, Comput. Vis. Sci., 12, 4, 171-188 (2009) · Zbl 1512.65036
[23] Preusser, T.; Rumpf, M.; Sauter, S.; Schwen, L. O., 3D Composite Finite Elements for Elliptic Boundary Value Problems with Discontinuous Coefficients, SIAM J. Sci. Comput., 33, 5, 2115-2143 (2011) · Zbl 1237.65129
[24] Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W. K., Immersed finite element method, Comput. Methods Appl. Mech. Engrg., 193, 2051-2067 (2004) · Zbl 1067.76576
[25] Löhner, R.; Cebral, R. J.; Camelli, F. E.; Appanaboyina, S.; Baum, J. D.; Mestreau, E. L.; Soto, O. A., Adaptive embedded and immersed unstructured grid techniques, Comput. Methods Appl. Mech. Engrg., 197, 2173-2197 (2008) · Zbl 1158.76408
[26] Schillinger, D.; Dede’, L.; Scott, M. A.; Evans, J. A.; Borden, M. J.; Rank, E.; Hughes, T. J.R., An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD Surfaces, Comput. Methods Appl. Mech. Engrg., 249-250, 116-150 (2012) · Zbl 1348.65055
[27] Rüberg, T.; Cirak, F., A fixed-grid b-spline finite element technique for fluid-structure interaction, Internat. J. Numer. Methods Fluids, 74, 9, 623-660 (2014) · Zbl 1455.65180
[28] Parvizian, J.; Düster, A.; Rank, E., Finite cell method: \(h\)- and \(p\)- extension for embedded domain methods in solid mechanics, Comput. Mech., 41, 122-133 (2007) · Zbl 1162.74506
[29] Schillinger, D.; Ruess, M.; Zander, N.; Bazilevs, Y.; Düster, A.; Rank, E., Small and large deformation analysis with the \(p\)- and B-spline versions of the Finite Cell Method, Comput. Mech., 50(4), 445-478 (2012) · Zbl 1398.74401
[30] Schillinger, D.; Ruess, M., The finite Cell Method: A review in the context of higher-order structural analysis of CAD and image-based geometric models, Arch. Comput. Methods Eng., 22, 3, 391-455 (2015) · Zbl 1348.65056
[31] Kamensky, D.; Hsu, M.-C.; Schillinger, D.; Evans, J. A.; Aggarwal, A.; Bazilevs, Y.; Sacks, M. S.; Hughes, T. J.R., An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves, Comput. Methods Appl. Mech. Engrg., 284, 1005-1053 (2015) · Zbl 1423.74273
[32] Xu, F.; Schillinger, D.; Kamensky, D.; Varduhn, V.; Wang, C.; Hsu, M.-C., The tetrahedral finite cell method for fluids: immersogeometric analysis of turbulent flow around complex geometries, Comput. & Fluids (2016) · Zbl 1390.76372
[33] Varduhn, V.; Hsu, M.-C.; Ruess, M.; Schillinger, D., The tetrahedral finite cell method: Higher-order immersogeometric analysis on adaptive non-boundary-fitted meshes, Int. J. Numer. Methods Engrg., 107, 1054-1079 (2016) · Zbl 1352.65558
[34] Stavrev, A.; Nguyen, L. H.; Shen, R.; Varduhn, V.; Behr, M.; Elgeti, S.; Schillinger, D., Geometrically accurate, efficient, and flexible quadrature techniques for the tetrahedral finite cell method, Comput. Methods Appl. Mech. Engrg., 310, 646-673 (2016) · Zbl 1439.65195
[35] Fries, T.-P.; Omerovic, S., Higher-order accurate integration of implicit geometries, Internat. J. Numer. Methods Engrg., 106, 1, 323-371 (2016) · Zbl 1352.65498
[36] Kudela, L.; Zander, N.; Kollmannsberger, S.; Rank, E., Smart octrees: Accurately integrating discontinuous functions in 3D, Comput. Methods Appl. Mech. Engrg. (2016) · Zbl 1436.65022
[37] Bueno-Orovio, A.; Pérez-García, V. M.; Fenton, F. H., Spectral methods for partial differential equations in irregular domains: the spectral smoothed boundary method, SIAM J. Sci. Comput., 28, 3, 886-900 (2006) · Zbl 1114.65119
[38] Rätz, A.; Voigt, A., PDE’s on surfaces—a diffuse interface approach, Commun. Math. Sci., 4, 3, 575-590 (2006) · Zbl 1113.35092
[39] Li, X.; Lowengrub, J.; Rätz, A.; Voigt, A., Solving PDEs in complex geometries: a diffuse domain approach, Commun. Math. Sci., 7, 1, 81 (2009) · Zbl 1178.35027
[40] K.Y. Lervåg, J. Lowengrub, Analysis of the diffuse-domain method for solving PDEs in complex geometries, arXiv preprint, 2014. arXiv:1407.7480; K.Y. Lervåg, J. Lowengrub, Analysis of the diffuse-domain method for solving PDEs in complex geometries, arXiv preprint, 2014. arXiv:1407.7480
[41] Teigen, K. E.; Li, X.; Lowengrub, J.; Wang, F.; Voigt, A., A diffuse-interface approach for modeling transport, diffusion and adsorption/desorption of material quantities on a deformable interface, Commun. Math. Sci., 4, 7, 1009 (2009) · Zbl 1186.35168
[42] Elliott, C. M.; Stinner, B.; Styles, V.; Welford, R., Numerical computation of advection and diffusion on evolving diffuse interfaces, IMA J. Numer. Anal., 31, 3, 786-812 (2011) · Zbl 1241.65081
[43] Aland, S.; Lowengrub, J.; Voigt, A., Two-phase flow in complex geometries: A diffuse domain approach, Comput. Model. Eng. Sci., 57, 1, 77 (2010) · Zbl 1231.76200
[44] Teigen, K. E.; Song, P.; Lowengrub, J.; Voigt, A., A diffuse-interface method for two-phase flows with soluble surfactants, J. Comput. Phys., 230, 2, 375-393 (2011) · Zbl 1428.76210
[45] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 45, 2765-2778 (2010) · Zbl 1231.74022
[46] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; T. J.R., Hughes; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217-220, 77-95 (2012) · Zbl 1253.74089
[47] Schillinger, D.; Borden, M. J.; Stolarski, H. K., Isogeometric collocation for phase-field fracture models, Comput. Methods Appl. Mech. Engrg., 284, 583-610 (2015) · Zbl 1423.74848
[48] Mikelic, A.; Wheeler, M. F.; Wick, T., A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium, SIAM Multiscale Model. Simul., 13, 1, 367-398 (2015) · Zbl 1317.74028
[49] Vilanova, G.; Colominas, I.; Gomez, H., Capillary networks in tumor angiogenesis: From discrete endothelial cells to phase-field averaged descriptions via isogeometric analysis, Int. J. Numer. Methods Biomed. Eng., 29, 10, 1015-1037 (2013)
[50] Gomez, H.; Cueto-Felgueroso, L.; Juanes, R., Three-dimensional simulation of unstable gravity-driven infiltration of water into a porous medium, J. Comput. Phys., 238, 217-239 (2013)
[51] Anders, D.; Hesch, C.; Weinberg, K., Computational modeling of phase separation and coarsening in solder alloys, Int. J. Solids Struct., 49, 13, 1557-1572 (2012)
[52] Liu, J.; Landis, C. M.; Gomez, H.; Hughes, T. J.R., Liquid-vapor phase transition: Thermomechanical theory, entropy stable numerical formulation, and boiling simulations, Comput. Methods Appl. Mech. Engrg., 297, 476-553 (2015) · Zbl 1423.76456
[53] Zhao, Y.; Stein, P.; Xu, B.-X., Isogeometric analysis of mechanically coupled Cahn-Hilliard phase segregation in hyperelastic electrodes of Li-ion batteries, Comput. Methods Appl. Mech. Engrg., 297, 325-347 (2015) · Zbl 1423.74325
[54] Peskin, C., The immersed boundary method, Acta Numer., 11, 479-517 (2002) · Zbl 1123.74309
[55] Griffith, B. E.; Peskin, C. S., On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems, J. Comput. Phys., 208, 75-105 (2005) · Zbl 1115.76386
[56] Ramière, I.; Angot, P.; Belliard, M., A fictitious domain approach with spread interface for elliptic problems with general boundary conditions, Comput. Methods Appl. Mech. Engrg., 196, 766-781 (2007) · Zbl 1121.65364
[57] Ramière, I.; Angot, P.; Belliard, M., A general fictitious domain method with immersed jumps and multilevel nested structured meshes, J. Comput. Phys., 225, 1347-1387 (2007) · Zbl 1122.65115
[58] Maury, Bertrand, A fat boundary method for the Poisson problem in a domain with holes, J. Sci. Comput., 16, 3, 319-339 (2001) · Zbl 0995.65115
[59] Bertoluzza, S.; Ismail, M.; Maury, B., Analysis of the fully discrete fat boundary method, Numer. Math., 118, 1, 49-77 (2011) · Zbl 1217.65201
[60] Boyer, F., Mathematical study of multi-phase flow under shear through order parameter formulation, Asymptot. Anal., 20, 2, 175-212 (1999) · Zbl 0937.35123
[61] Boyer, F., A theoretical and numerical model for the study of incompressible mixture flows, Comput. & Fluids, 31, 1, 41-68 (2002) · Zbl 1057.76060
[62] Boyer, F.; Lapuerta, C.; Minjeaud, S.; Piar, B., A local adaptive refinement method with multigrid preconditionning illustrated by multiphase flows simulations, (ESAIM: Proceedings, Vol. 27 (2009)), 15-53 · Zbl 1167.76019
[63] Karma, A.; Rappel, W.-J., Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E, 57, 4, 4323 (1998) · Zbl 1086.82558
[64] Fenton, F. H.; Cherry, E. M.; Karma, A.; Rappel, W.-J., Modeling wave propagation in realistic heart geometries using the phase-field method, Chaos, 15, 1, 013502 (2005) · Zbl 1080.92038
[65] Shen, J.; Yang, X., Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., 28, 4, 1669-1691 (2010) · Zbl 1201.65184
[66] Donea, J.; Huerta, A., Finite Element Methods for Flow Problems (2003), Wiley
[67] Schwen, L. O.; Krauss, M.; Niederalt, C.; Gremse, F.; Kiessling, F., Spatio-temporal simulation of first pass drug perfusion in the liver, PLoS Comput. Biol., 10, 3, e1003499 (2014)
[68] Masud, A.; Hughes, T. J.R., A stabilized mixed finite element method for Darcy flow, Comput. Methods Appl. Mech. Engrg., 191, 39, 4341-4370 (2002) · Zbl 1015.76047
[69] Malta, S. M.C.; Loula, A. F.D.; Garcia, E. L.M., Numerical analysis of a stabilized finite element method for tracer injection simulations, Comput. Methods Appl. Mech. Engrg., 187, 1, 119-136 (2000) · Zbl 0958.76044
[70] Michler, C.; Cookson, A. N.; Chabiniok, R.; Hyde, E.; Lee, J.; Sinclair, M.; Sochi, T.; Goyal, A.; Vigueras, G.; Nordsletten, D. A.; Smith, N. P., A computationally efficient framework for the simulation of cardiac perfusion using a multi-compartment Darcy porous-media flow model, Int. J. Numer. Methods Biomed. Eng., 29, 2, 217-232 (2013)
[71] Payne, L. E.; Straughan, B., Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions, J. Math. Pures Appl. (9), 77, 4, 317-354 (1998) · Zbl 0906.35067
[72] Jäger, W.; Mikelic, A., On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Differential Equations, 170, 1, 96-122 (2001) · Zbl 1009.76017
[73] Martin, W.; Cohen, E.; Fish, R.; Shirley, P., Practical ray tracing of trimmed NURBS surfaces, J. Graphics Tools, 5, 1, 27-52 (2000)
[74] Netgen Mesh Generator, developed by J. Schoeberl, 2015, http://sourceforge.net/projects/netgen-mesher/; Netgen Mesh Generator, developed by J. Schoeberl, 2015, http://sourceforge.net/projects/netgen-mesher/
[75] Schöberl, Joachim, NETGEN. An advancing front 2D/3D-mesh generator based on abstract rules, Comput. Vis. Sci., 1, 1, 41-52 (1997) · Zbl 0883.68130
[76] Tezduyar, T. E., Stabilized finite element formulations for incompressible flow computations, Adv. Appl. Mech., 28, 1-44 (1991) · Zbl 0747.76069
[77] Tezduyar, T. E.; Osawa, Y., Finite element stabilization parameters computed from element matrices and vectors, Comput. Methods Appl. Mech. Engrg., 28, 411-430 (2000) · Zbl 0973.76057
[78] Nguyen, L. H.; Stoter, S. K.F.; Baum, T.; Kirschke, J. S.; Ruess, M.; Yosibash, Z.; Schillinger, D., Phase-field boundary conditions for the voxel finite cell method: surface-free stress analysis of CT-based bone structures, Int. J. Numer. Methods Biomed. Eng. (2017)
[79] Chen, X., Generation, propagation, and annihilation of metastable patterns, J. Differential Equations, 206, 2, 399-437 (2004) · Zbl 1061.35014
[80] Carr, J.; Pego, R. L., Metastable patterns in solutions of \(u_t = e 2 u_{x x} - f(u)\), Comm. Pure Appl. Math., 42, 5, 523-576 (1989) · Zbl 0685.35054
[81] Ambrosio, L.; Tortorelli, V. M., Approximation of functional depending on jumps by elliptic functional via \(?\)-convergence, Comm. Pure Appl. Math., 43, 8, 999-1036 (1990) · Zbl 0722.49020
[82] Bourdin, B., Image segmentation with a finite element method, ESAIM: Modélisation Mathématique et analyse Numérique, 33, 2, 229-244 (1999) · Zbl 0947.65075
[83] Braides, Andrea, Gamma-Convergence for Beginners. Vol. 22 (2002), Oxford University Press · Zbl 1198.49001
[84] Bar, L.; Chan, T. F.; Chung, G.; Jung, M.; Kiryati, N.; Mohieddine, R.; Sochen, N.; Vese, L. A., Mumford and Shah model and its applications to image segmentation and image restoration, (Handbook of Mathematical Methods in Imaging (2011), Springer), 1095-1157 · Zbl 1259.94009
[85] Logg, A.; Mardal, K.-A.; Wells, G., Automated Solution of Differential Equations By the Finite Element Method: The FEniCS Book, Vol. 84 (2012), Springer Science & Business Media · Zbl 1247.65105
[86] Evans, J. A.; Hughes, T. J.R., Isogeometric divergence-conforming B-splines for the steady Navier-Stokes equations, Math. Models Methods Appl. Sci., 23, 1421 (2013) · Zbl 1383.76337
[87] Bazilevs, Y.; Hughes, T. J.R., Weak imposition of Dirichlet boundary conditions in fluid mechanics, Comput. & Fluids, 36, 12-26 (2007) · Zbl 1115.76040
[88] Schillinger, D.; Harari, I.; Hsu, M.-C.; Kamensky, D.; Stoter, K. F.S.; Yu, Y.; Ying, Z., The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements, Comput. Methods Appl. Mech. Engrg., 309, 625-652 (2016) · Zbl 1439.65192
[89] Wahlbin, L., Superconvergence in Galerkin Finite Element Methods (2006), Springer
[90] Caiazzo, A.; John, V.; Wilbrandt, U., On classical iterative subdomain methods for the Stokes-Darcy problem, Comput. Geosci., 18, 5, 711-728 (2014) · Zbl 1392.76074
[91] Schneider, P. D., Preoperative assessment of liver function, Surg. Clin. North Am., 84, 2, 355-373 (2004)
[92] Hossain, S. S.; Hossainy, S. F.A.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R., Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls, Comput. Mech., 49, 2, 213-242 (2012) · Zbl 1366.92059
[93] Liu, Y.; Shah, S.; Tan, J., Computational modeling of nanoparticle targeted drug delivery, Rev. Nanosci. Nanotechnology, 1, 1, 66-83 (2012)
[94] Cattaneo, L.; Zunino, P., A computational model of drug delivery through microcirculation to compare different tumor treatments, Int. J. Numer. Methods Biomed. Eng., 30, 11, 1347-1371 (2014)
[95] Ricken, T.; Dahmen, U.; Dirsch, O., A biphasic model for sinusoidal liver perfusion remodeling after outflow obstruction, Biomech. Model. Mechanobiol., 9, 4, 435-450 (2010)
[96] Birkfellner, W., Applied Medical Image Processing: A Basic Course (2014), Taylor & Francis
[97] Debbaut, C., Multi-level modelling of hepatic perfusion in support of liver transplantation strategies (2013), Ghent University, (Ph.D. dissertation)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.