×

Two-step sub-Lorentzian structures and graph surfaces. (English. Russian original) Zbl 1440.53038

Izv. Math. 84, No. 1, 52-94 (2020); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 84, No. 1, 60-104 (2020).
Summary: We establish an area formula for graph mappings on two-step sub-Lorentzian structures with an arbitrary number of spatial and temporal directions. In a particular case, we consider an alternative approach that requires no additional smoothness of the mapping from which the graph is constructed.

MSC:

53C17 Sub-Riemannian geometry
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] V. M. Miklyukov, A. A. Klyachin, and V. A. Klyachin Maximal surfaces in Minkowski space-time http://www.uchimsya.info/maxsurf.pdf · Zbl 0747.53048
[2] G. L. Naber 1992 The geometry of Minkowski spacetime. An introduction to the mathematics of the special theory of relativity Appl. Math. Sci. 92 Springer-Verlag, New York · Zbl 0757.53046 · doi:10.1007/978-1-4757-4326-5
[3] B. Nielsen 1987 Minimal immersions, Einstein’s equations and Mach’s principle J. Geom. Phys.4 1 1-20 · Zbl 0635.53031 · doi:10.1016/0393-0440(87)90008-8
[4] V. N. Berestovskii and V. M. Gichev 1999 Metrized left-invariant orders on topological groups Algebra i Analiz11 4 1-34 · Zbl 0948.22004
[5] English transl. V. N. Berestovskii and V. M. Gichev 2000 St. Petersburg Math. J.11 4 543-565
[6] M. Grochowski 2006 Reachable sets for the Heisenberg sub-Lorentzian structure on \(\mathbb R^3\). An estimate for the distance function J. Dyn. Control Syst.12 2 145-160 · Zbl 1120.53042 · doi:10.1007/s10450-006-0378-y
[7] M. Grochowski 2009 Properties of reachable sets in the sub-Lorentzian geometry J. Geom. Phys.59 7 885-900 · Zbl 1171.53023 · doi:10.1016/j.geomphys.2009.03.011
[8] M. Grochowski 2011 Normal forms and reachable sets for analytic Martinet sub-Lorentzian structures of Hamiltonian type J. Dyn. Control Syst.17 1 49-75 · Zbl 1209.53018 · doi:10.1007/s10883-011-9110-7
[9] M. Grochowski 2011 Reachable sets for contact sub-Lorentzian metrics on \(\mathbb R^3\). Application to control affine systems on \(\mathbb R^3\) with a scalar input J. Math. Sci. (N.Y.)177 3 383-394 · Zbl 1290.53069 · doi:10.1007/s10958-011-0464-x
[10] M. Grochowski 2012 The structure of reachable sets for affine control systems induced by generalized Martinet sub-Lorentzian metrics ESAIM Control Optim. Calc. Var.18 4 1150-1177 · Zbl 1268.53040 · doi:10.1051/cocv/2011202
[11] M. Grochowski 2014 The structure of reachable sets and geometric optimality of singular trajectories for certain affine control systems in \(\mathbb R^3\). The sub-Lorentzian approach J. Dyn. Control Syst.20 1 59-89 · Zbl 1301.53017 · doi:10.1007/s10883-013-9202-7
[12] M. Grochowski 2002 Geodesics in the sub-Lorentzian geometry Bull. Polish Acad. Sci. Math.50 2 161-178 · Zbl 1043.53034
[13] M. Grochowski 2013 Remarks on global sub-Lorentzian geometry Anal. Math. Phys.3 4 295-309 · Zbl 1294.53031 · doi:10.1007/s13324-013-0059-4
[14] A. Korolko and I. Markina 2009 Nonholonomic Lorentzian geometry on some \(\mathbb H\)-type groups J. Geom. Anal.19 4 864-889 · Zbl 1178.53070 · doi:10.1007/s12220-009-9088-5
[15] A. Korolko and I. Markina 2010 Geodesics on \(\mathbb H\)-type quaternion groups with sub-Lorentzian metric and their physical interpretation Complex Anal. Oper. Theory4 3 589-618 · Zbl 1201.53037 · doi:10.1007/s11785-010-0079-0
[16] V. R. Krym and N. N. Petrov 2007 Equations of motion of a charged particle in a five-dimensional model of the general theory of relativity with a nonholonomic four-dimensional velocity space Vestn. St.-Petersburg Univ. Ser. 1. Mat. Mekh. Astron. 1 62-70 · Zbl 1145.83314
[17] English transl. V. R. Krym and N. N. Petrov 2007 Vestnik St. Petersburg Univ. Math.40 1 52-60 · Zbl 1145.83314 · doi:10.3103/S1063454107010062
[18] V. R. Krym and N. N. Petrov 2008 The curvature tensor and the Einstein equations for a four-dimensional nonholonomic distribution Vestn. St.-Petersburg. Univ. Ser. 1. Mat. Mekh. Astron. 3 68-80
[19] English transl. V. R. Krym and N. N. Petrov 2008 Vestnik St. Petersburg Univ. Math.41 3 256-265 · Zbl 1253.53045 · doi:10.3103/S1063454108030060
[20] W. Craig and S. Weinstein 2009 On determinism and well-posedness in multiple time dimensions Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.465 2110 3023-3046 · Zbl 1181.35140 · doi:10.1098/rspa.2009.0097
[21] I. Bars and J. Terning 2010 Extra dimensions in space and time Multiversal Journeys Springer, New York · Zbl 1207.83001 · doi:10.1007/978-0-387-77638-5
[22] M. V. Velev 2012 Relativistic mechanics in multiple time dimensions Phys. Essays25 3 403-438 · doi:10.4006/0836-1398-25.3.403
[23] M. B. Karmanova 2015 The area formula for graphs on \(4\)-dimensional \(2\)-step sub-Lorentzian structures Sib. Mat. Zh.56 5 1068-1091 · Zbl 1345.53035 · doi:10.17377/smzh.2015.56.508
[24] English transl. M. B. Karmanova 2015 Siberian Math. J.56 5 852-871 · Zbl 1345.53035 · doi:10.1134/S0037446615050080
[25] M. B. Karmanova 2015 The area of graph surfaces on four-dimensional two-step sub-Lorentzian structures Dokl. Ross. Akad. Nauk463 4 387-390 · Zbl 1334.53022 · doi:10.7868/S0869565215220053
[26] Englsih transl. M. B. Karmanova 2015 Dokl. Math.92 1 456-459 · Zbl 1334.53022 · doi:10.1134/S1064562415040183
[27] M. B. Karmanova 2016 Maximal graph surfaces on four-dimensional two-step sub-Lorentzian structures Sib. Mat. Zh.57 2 350-363 · Zbl 1350.53043 · doi:10.17377/smzh.2016.57.210
[28] English transl. M. B. Karmanova 2016 Siberian Math. J.57 2 274-284 · Zbl 1350.53043 · doi:10.1134/S0037446616020105
[29] M. B. Karmanova 2017 Graph surfaces on five-dimensional sub-Lorentzian structures Sib. Mat. Zh.58 1 122-142 · Zbl 1375.53044 · doi:10.17377/smzh.2017.58.113
[30] English transl. M. B. Karmanova 2017 Siberian Math. J.58 1 91-108 · Zbl 1375.53044 · doi:10.1134/S003744661701013X
[31] M. B. Karmanova 2016 Area formula for graph surfaces on five-dimensional sub-Lorentzian structures Dokl. Ross. Akad. Nauk467 6 634-637 · Zbl 1350.53042 · doi:10.7868/S0869565216120045
[32] English transl. M. B. Karmanova 2016 Dokl. Math.93 2 216-219 · Zbl 1350.53042 · doi:10.1134/S1064562416020277
[33] M. B. Karmanova 2018 Maximal surfaces on five-dimensional group structures Sib. Mat. Zh.59 3 561-579 · Zbl 1402.53025 · doi:10.17377/smzh.2018.59.307
[34] English transl. M. B. Karmanova 2018 Siberian Math. J.59 3 442-457 · Zbl 1402.53025 · doi:10.1134/S0037446618030072
[35] M. B. Karmanova 2016 Variations of nonholonomic-valued mappings and their applications to maximal surface theory Dokl. Ross. Akad. Nauk468 3 257-260 · Zbl 1354.53047 · doi:10.7868/S0869565216150056
[36] English transl. M. B. Karmanova 2016 Dokl. Math.93 3 276-279 · Zbl 1354.53047 · doi:10.1134/S106456241603011X
[37] M. B. Karmanova 2017 Surface area on two-step sub-Lorentzian structures with multi-dimensional time Dokl. Ross. Akad. Nauk474 2 151-154 · Zbl 1375.53047 · doi:10.7868/S086956521714002X
[38] English transl. M. B. Karmanova 2017 Dokl. Math.95 3 218-221 · Zbl 1375.53047 · doi:10.1134/S1064562417030085
[39] M. B. Karmanova 2018 Graphs of Lipschitz mappings on two-step sub-Lorentzian structures with multidimensional time Dokl. Ross. Akad. Nauk481 5 474-477 · Zbl 1403.53032 · doi:10.31857/S086956520002140-7
[40] English transl. M. B. Karmanova 2018 Dokl. Math.98 1 360-363 · Zbl 1403.53032 · doi:10.1134/S1064562418050186
[41] G. B. Folland and E. M. Stein 1982 Hardy spaces on homogeneous groups Math. Notes 28 Princeton Univ. Press, Princeton, NJ, Univ. of Tokyo Press, Tokyo · Zbl 0508.42025
[42] P. Pansu 1989 Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un Ann. of Math. (2)129 1 1-60 · Zbl 0678.53042 · doi:10.2307/1971484
[43] M. B. Karmanova 2012 The graphs of Lipschitz functions and minimal surfaces on Carnot groups Sib. Mat. Zh.53 4 839-861 · Zbl 1257.53050
[44] English transl. M. B. Karmanova 2012 Siberian Math. J.53 4 672-690 · Zbl 1262.53029 · doi:10.1134/S0037446612040106
[45] S. K. Vodopyanov 2007 Geometry of Carnot-Carathéodory spaces and differentiability of mappings The interaction of analysis and geometry Contemp. Math. 424 Amer. Math. Soc., Providence, RI 247-301 · Zbl 1146.53023 · doi:10.1090/conm/424/08105
[46] M. B. Karmanova 2017 The polynomial sub-Riemannian differentiability of some Hölder mappings of Carnot groups Sib. Mat. Zh.58 2 305-332 · Zbl 1375.53045 · doi:10.17377/smzh.2017.58.206
[47] English transl. M. B. Karmanova 2017 Siberian Math. J.58 2 232-254 · Zbl 1375.53045 · doi:10.1134/S0037446617020069
[48] M. B. Karmanova 2017 Area formulas for classes of Hölder continuous mappings of Carnot groups Sib. Mat. Zh.58 5 1056-1079 · Zbl 1392.53051 · doi:10.17377/smzh.2017.58.509
[49] English transl. M. B. Karmanova 2017 Siberian Math. J.58 5 817-836 · Zbl 1392.53051 · doi:10.1134/S0037446617050093
[50] A. Ostrowski 1937 Sur la détermination des bornes inférieures pour une classe des déterminants Bull. Sci. Math.61 19-32 · JFM 63.0034.05
[51] M. B. Karmanova 2014 An area formula for Lipschitz mappings of Carnot-Carathéodory spaces Izv. Ross. Akad. Nauk Ser. Mat.78 3 53-78 · Zbl 1305.53042 · doi:10.4213/im8083
[52] English transl. M. B. Karmanova 2014 Izv. Math.78 3 475-499 · Zbl 1305.53042 · doi:10.1070/IM2014v078n03ABEH002695
[53] S. K. Vodop’yanov Lebesgue integration http://math.nsc.ru/ matanalyse/Lebesgue.pdf
[54] M. de Guzmán 1975 Differentiation of integrals in \(\mathbf R^n\) Lecture Notes in Math. 481 Springer-Verlag, Berlin-New York · Zbl 0327.26010 · doi:10.1007/BFb0081986
[55] S. K. Vodop’yanov and A. D. Ukhlov 2003 Set functions and their applications in the theory of Lebesgue and Sobolev spaces. I Mat. Trudy6 2 14-65 · Zbl 1050.47030
[56] English transl. S. K. Vodop’yanov and A. D. Ukhlov 2004 Siberian Adv. Math.14 4 78-125 · Zbl 1089.47027
[57] S. K. Vodop’yanov and A. D. Ukhlov 2004 Set functions and their applications in the theory of Lebesgue and Sobolev spaces. II Mat. Trudy7 1 13-49 · Zbl 1091.47027
[58] English transl. S. K. Vodop’yanov and A. D. Ukhlov 2005 Siberian Adv. Math.15 1 91-125
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.