×

Biomembrane modeling with isogeometric analysis. (English) Zbl 1440.74193

Summary: We consider the numerical approximation of lipid biomembranes at equilibrium described by the Canham-Helfrich model, according to which the bending energy is minimized under area and volume constraints. Energy minimization is performed via \(L^2\)-gradient flow of the Canham-Helfrich energy using two Lagrange multipliers to weakly enforce the constraints. This yields a highly nonlinear, high order, time dependent geometric Partial Differential Equation (PDE). We represent the biomembranes as single-patch NURBS closed surfaces. We discretize the geometric PDEs in space with NURBS-based Isogeometric Analysis and in time with Backward Differentiation Formulas. We tackle the nonlinearity in our formulation through a semi-implicit approach by extrapolating, at each time level, the geometric quantities of interest from previous time steps. We report the numerical results of the approximation of the Canham-Helfrich problem on ellipsoids of different aspect ratio, which leads to the classical biconcave shape of lipid vesicles at equilibrium. We show that this framework permits an accurate approximation of the Canham-Helfrich problem, while being computationally efficient.

MSC:

74K15 Membranes
74L15 Biomechanical solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65D07 Numerical computation using splines
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Seifert, U., Configurations of fluid membranes and vesicles, Adv. Phys., 46, 1, 13-137 (1997)
[2] Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K.; Watson, J. D., Molecular biology of the cell (1994), Garland: Garland New York
[3] Boey, S. K.; Boal, D. H.; Discher, D. E., Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models, Biophys. J., 75, 3, 1573-1583 (1998)
[4] Discher, D. E.; Boal, D. H.; Boey, S. K., Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration, Biophys. J., 75, 3, 1584-1597 (1998)
[5] Li, J.; Dao, M.; Lim, C.; Suresh, S., Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte, Biophys. J., 88, 5, 3707-3719 (2005)
[6] Noguchi, H.; Gompper, G., Shape transitions of fluid vesicles and red blood cells in capillary flows, Proc. Natl. Acad. Sci. USA, 102, 40, 14159-14164 (2005)
[7] Fedosov, D. A.; Caswell, B.; Karniadakis, G. E., A multiscale red blood cell model with accurate mechanics, rheology, and dynamics, Biophys. J., 98, 10, 2215-2225 (2010)
[8] Fedosov, D. A.; Lei, H.; Caswell, B.; Suresh, S.; Karniadakis, G. E., Multiscale modeling of red blood cell mechanics and blood flow in malaria, PLoS Comput. Biol., 7, 12, 1-13 (2011)
[9] Hartmann, D., A multiscale model for red blood cell mechanics, Biomech. Model. Mechanobiol., 9, 1, 1-17 (2010)
[10] Pauletti, M. S., Parametric AFEM for Geometric Evolution Equation and Coupled Fluid-Membrane Interaction (2008), University of Maryland, (Ph.D. thesis)
[11] Morin, P.; Nochetto, R. H.; Pauletti, M. S.; Verani, M., Adaptive finite element method for shape optimization, ESAIM Control Optim. Calc. Var., 18, 4, 1122-1149 (2012) · Zbl 1259.49046
[12] Bonito, A.; Nochetto, R. H.; Pauletti, M. S., Parametric FEM for geometric biomembranes, J. Comput. Phys., 229, 9, 3171-3188 (2010) · Zbl 1307.76049
[13] Bonito, A.; Nochetto, R. H.; Pauletti, M. S., Dynamics of biomembranes: Effect of the bulk fluid, Math. Model. Nat. Phenom., 6, 05, 25-43 (2011) · Zbl 1231.92014
[14] Laadhari, A.; Misbah, C.; Saramito, P., On the equilibrium equation for a generalized biological membrane energy by using a shape optimization approach, Physica D, 239, 16, 1567-1572 (2010) · Zbl 1193.37134
[15] Casquero, H.; Bona-Casas, C.; Gomez, H., NURBS-based numerical proxies for red blood cells and circulating tumor cells in microscale blood flow, Comput. Methods Appl. Mech. Engrg., 316, 646-667 (2017) · Zbl 1439.76182
[16] Fung, Y., Biomechanics: Mechanical Properties of Living Tissues (1993), Springer-Verlag, Berlin and Heidelberg
[17] Helfrich, W., Elastic properties of lipid bilayers: Theory and possible experiments, Zeitschrift für Naturforschung. Teil C, 28, 11, 693-703 (1973)
[18] Canham, P. B., The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, J. Theoret. Biol., 26, 1, 61-81 (1970)
[19] Du, Q.; Liu, C.; Wang, X., A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, J. Comput. Phys., 198, 2, 450-468 (2004) · Zbl 1116.74384
[20] Du, Q.; Zhu, L., Analysis of a mixed finite element method for a phase field bending elasticity model of vesicle membrane deformation, J. Comput. Math., 24, 3, 265-280 (2006) · Zbl 1095.74033
[21] Wang, X.; Du, Q., Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches, J. Math. Biol., 56, 3, 347-371 (2008) · Zbl 1143.92001
[22] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[23] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric Analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39, 4135-4195 (2005) · Zbl 1151.74419
[24] Piegl, L. A.; Tiller, W., The NURBS Book (1997), Springer-Verlag: Springer-Verlag Berlin · Zbl 0868.68106
[25] Tagliabue, A.; Dedè, L.; Quarteroni, A., Isogeometric analysis and error estimates for high order partial differential equations in fluid dynamics, Comput. & Fluids, 102, 277-303 (2014) · Zbl 1391.76360
[26] Bartezzaghi, A.; Dedè, L.; Quarteroni, A., Isogeometric Analysis of high order partial differential equations on surfaces, Comput. Methods Appl. Mech. Engrg., 295, 446-469 (2015) · Zbl 1425.65145
[27] Bartezzaghi, A.; Dedè, L.; Quarteroni, A., Isogeometric analysis of geometric partial differential equations, Comput. Methods Appl. Mech. Engrg., 311, 625-647 (2016) · Zbl 1439.65145
[28] Toshniwal, D.; Speleers, H.; Hiemstra, R.; Hughes, T., Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 316, 1051-1061 (2017) · Zbl 1439.65016
[29] Toshniwal, D.; Speleers, H.; Hughes, T., Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: Geometric design and isogeometric analysis considerations, Comput. Methods Appl. Mech. Engrg., 317, 411-458 (2017) · Zbl 1439.65017
[30] Quarteroni, A.; Sacco, R.; Saleri, F., Numerical Mathematics (2007), Springer-Verlag: Springer-Verlag Berlin and Heidelberg · Zbl 0913.65002
[31] Gervasio, P.; Saleri, F.; Veneziani, A., Algebraic fractional-step schemes with spectral methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 214, 1, 347-365 (2006) · Zbl 1137.76338
[32] Forti, D.; Dedè, L., Semi-implicit BDF time discretization of the Navier-Stokes equations with VMS-LES modeling in a High Performance Computing framework, Comput. Fluids, 117, 168-182 (2015) · Zbl 1390.76149
[33] Bonito, A.; Nochetto, R. H.; Pauletti, M., Geometrically consistent mesh modification, SIAM J. Numer. Anal., 48, 5, 1877-1899 (2010) · Zbl 1220.65169
[34] Willmore, T. J., Riemannian Geometry (1996), Oxford University Press · Zbl 0797.53002
[35] Helfrich, W., Blocked lipid exchange in bilayers and its possible influence on the shape of vesicles, Zeitschrift für Naturforschung. Teil C, 29, 9-10, 510-515 (1974)
[36] Deuling, H.; Helfrich, W., Red blood cell shapes as explained on the basis of curvature elasticity, Biophys. J., 16, 8, 861 (1976)
[37] Seguin, B.; Fried, E., Microphysical derivation of the Canham-Helfrich free-energy density, J. Math. Biol., 68, 3, 647-665 (2014) · Zbl 1345.92020
[38] Do Carmo, M. P., Differential Geometry of Curves and Surfaces, Vol. 2 (1976), Prentice-Hall: Prentice-Hall Englewood Cliffs (NJ) · Zbl 0326.53001
[39] Zhong-Can, O.-Y.; Helfrich, W., Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders, Phys. Rev. A, 39, 10, 5280 (1989)
[40] Dziuk, G., Computational parametric Willmore flow, Numer. Math., 111, 1, 55-80 (2008) · Zbl 1158.65073
[41] Rusu, R. E., An algorithm for the elastic flow of surfaces, Interfaces Free Bound., 7, 3, 229-239 (2005) · Zbl 1210.35149
[42] Dedè, L.; Quarteroni, A., Isogeometric analysis for second order partial differential equations on surfaces, Comput. Methods Appl. Mech. Engrg., 284, 807-834 (2015) · Zbl 1425.65156
[43] Barrett, J. W.; Garcke, H.; Nürnberg, R., Parametric approximation of Willmore flow and related geometric evolution equations, SIAM J. Sci. Comput., 31, 1, 225-253 (2008) · Zbl 1186.65133
[44] Rao, G., Numerical Analysis (2009), New Age International Publishers: New Age International Publishers New Delhi
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.