×

Optimal embeddings into Lorentz spaces for some vector differential operators via Gagliardo’s lemma. (English) Zbl 1442.46027

Summary: We prove a family of Sobolev inequalities of the form \[\Vert u \Vert_{L^{\frac{n}{n-1}, 1} (\mathbb{R}^n,V)} \le C \Vert A (D) u \Vert_{L^1 (\mathbb{R}^n,E)}\] where \(A (D) : C^\infty_c (\mathbb{R}^n, V) \to C^\infty_c (\mathbb{R}^n, E)\) is a vector first-order homogeneous linear differential operator with constant coefficients, \(u\) is a vector field on \(\mathbb{R}^n\) and \(L^{\frac{n}{n - 1}, 1} (\mathbb{R}^n)\) is a Lorentz space. These new inequalities imply in particular the extension of the classical Gagliardo-Nirenberg inequality to Lorentz spaces originally due to A. Alvino [Boll. Unione Mat. Ital., V. Ser., A 14, 148–156 (1977; Zbl 0352.46020)] and a sharpening of an inequality in terms of the deformation operator by M. J. Strauss [in: Partial diff. Equ., Berkeley 1971, Proc. Sympos. Pure Math. 23, 207–214 (1973; Zbl 0259.35008)] (Korn-Sobolev inequality) on the Lorentz scale. The proof relies on a nonorthogonal application of the Loomis-Whitney inequality and Gagliardo’s lemma.
.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
26D10 Inequalities involving derivatives and differential and integral operators
35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals

References:

[1] R. A. Adams - J. J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. · Zbl 1098.46001
[2] A. Alvino, Sulla diseguaglianza di Sobolev in spazi di Lorentz, Boll. Un. Mat. Ital. A (5) 14 (1977), no. 1, 148-156. · Zbl 0352.46020
[3] N. Aronszajn - E. Gagliardo, Interpolation spaces and interpolation methods, Ann. Mat. Pura Appl. (4) 68 (1965), 51-117. · Zbl 0195.13102
[4] J.-F. Babadjian, Traces of functions of bounded deformation, Indiana Univ. Math. J. 64 (2015), no. 4, 1271-1290,doi:10.1512/iumj.2015.64.5601. · Zbl 1339.26030
[5] A. C. Barroso - I. Fonseca - R. Toader, A relaxation theorem in the space of functions of bounded deformation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), no. 1, 19-49. · Zbl 0960.49014
[6] J. Bourgain - H. Brezis, New estimates for the Laplacian, the div-curl, and related Hodge systems, C. R. Math. Acad. Sci. Paris 338 (2004), no. 7, 539-543, doi:10.1016/j.crma.2003.12.031. · Zbl 1101.35013
[7] J. Bourgain - H. Brezis, New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 2, 277-315,doi:10.4171/JEMS/80. · Zbl 1176.35061
[8] P. Bousquet - J. Van Schaftingen, Hardy-Sobolev inequalities for vector fields and canceling linear di¤erential operators, Indiana Univ. Math. J. 63 (2014), no. 5, 1419-1445,doi:10.1512/iumj.2014.63.5395. · Zbl 1325.46037
[9] H. Brezis, Laser beams and limiting cases of Sobolev inequalities, Nonlinear partial di¤erential equations and their applications. Colle‘ge de France Seminar, Vol. II (Paris, 1979), Res. Notes in Math., vol. 60, Pitman, Boston, Mass.-London, 1982, pp. 86-97. · Zbl 0489.35040
[10] H. Brezis - S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Di¤erential Equations 5 (1980), no. 7, 773-789. · Zbl 0437.35071
[11] G. Dal Maso, Generalised functions of bounded deformation, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 5, 1943-1997,doi:10.4171/JEMS/410. · Zbl 1271.49029
[12] D. G. de Figueiredo, The coerciveness problem for forms over vector valued functions, Comm. Pure Appl. Math. 16 (1963), 63-94,doi:10.1002/cpa.3160160109. · Zbl 0136.09502
[13] G. Duvaut - J.-L. Lions, Un proble‘me d’e´lasticite´ avec frottement, J. Me´canique 10 (1971), 409-420. · Zbl 0253.73013
[14] L. C. Evans - R. F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, Fla., 1992. · Zbl 0804.28001
[15] H. Federer - W. H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458-520,doi:10.2307/1970227. · Zbl 0187.31301
[16] J. J. F. Fournier, Mixed norms and rearrangements: Sobolev’s inequality and Littlewood’s inequality, Ann. Mat. Pura Appl. (4) 148 (1987), 51-76, doi:10.1007/BF01774283. · Zbl 0639.46034
[17] E. Gagliardo, Proprieta‘ di alcune classi di funzioni in piu‘ variabili, Ricerche Mat. 7 (1958), 102-137. · Zbl 0089.09401
[18] E. Gagliardo, Interpolazione di spazi di Banach e applicazioni, Ricerche Mat. 9 (1960), 58-81. · Zbl 0097.09402
[19] L. Grafakos, Classical Fourier analysis, 3rd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2014. · Zbl 1304.42001
[20] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52, Springer, New York-Heidelberg, 1977. · Zbl 0367.14001
[21] R. A. Horn - C. R. Johnson, Matrix analysis, 2nd ed., Cambridge University Press, Cambridge, 2013. · Zbl 1267.15001
[22] L. Lanzani - E. M. Stein, A note on div curl inequalities, Math. Res. Lett. 12 (2005), no. 1, 57-61,doi:10.4310/MRL.2005.v12.n1.a6. · Zbl 1113.26015
[23] J.-L. Lions, The´ore‘mes de trace et d’interpolation. I, Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 389-403; II, Ann. Scuola Norm. Sup. Pisa (3) 14 (1960), 317-331; III, J. Math. Pures Appl. (9) 42 (1963), 195-203; IV, Math. Ann. 151 (1963), 42-56; V, An. Acad. Brasil. Ci. 35 (1963), 1-10.
[24] J.-L. Lions - J. Peetre, Proprie´te´s d’espaces d’interpolation, C. R. Acad. Sci. Paris 253 (1961), 1747-1749. · Zbl 0115.33004
[25] J.-L. Lions - J. Peetre, Sur une classe d’espaces d’interpolation, Inst. Hautes E´ tudes Sci. Publ. Math. 19 (1964), 5-68. · Zbl 0148.11403
[26] L. H. Loomis - H. Whitney, An inequality related to the isoperimetric inequality, Bull. Amer. Math. Soc 55 (1949), 961-962,doi:10.1090/S0002-9904-1949-09320-5. · Zbl 0035.38302
[27] G. G. Lorentz, Some new functional spaces, Ann. of Math. (2) 51 (1950), 37-55, doi:10.2307/1969496. · Zbl 0035.35602
[28] V. G. Maz0ya,Classes of domains and imbedding theorems for function spaces, Soviet Math. Dokl. 1 (1960), 882-885. · Zbl 0114.31001
[29] L. Nirenberg, On elliptic partial di¤erential equations, Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 115-162. · Zbl 0088.07601
[30] R. O’Neil, Convolution operators and Lðp; qÞ spaces, Duke Math. J. 30 (1963), 129-142. · Zbl 0178.47701
[31] J. Peetre, Espaces d’interpolation et the´ore‘me de Sobole¤, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 279-317. · Zbl 0151.17903
[32] S. Poornima, An embedding theorem for the Sobolev space W1; 1, Bull. Sci. Math. (2) 107 (1983), no. 3, 253-259. · Zbl 0529.46025
[33] M. J. Strauss, Variations of Korn’s and Sobolev’s equalities, Partial di¤erential equations (Univ. California, Berkeley, Calif., 1971), Proc. Sympos. Pure Math., vol. XXIII, Amer. Math. Soc., Providence, R.I., 1973, pp. 207-214. · Zbl 0259.35008
[34] L. Tartar, Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), no. 3, 479-500. · Zbl 0929.46028
[35] L. Tartar, An introduction to Sobolev spaces and interpolation spaces, Lecture Notes of the Unione Matematica Italiana, vol. 3, Springer, Berlin; UMI, Bologna, 2007. · Zbl 1126.46001
[36] R. Temam - G. Strang, Functions of bounded deformation, Arch. Rational Mech. Anal. 75 (1980/81), no. 1, 7-21. · Zbl 0472.73031
[37] H. Triebel, Interpolation theory, function spaces, di¤erential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. · Zbl 0387.46033
[38] J. Van Schaftingen, Estimates for L1-vector fields, C. R. Math. Acad. Sci. Paris 339 (2004), no. 3, 181-186,doi:10.1016/j.crma.2004.05.013. · Zbl 1049.35069
[39] J. Van Schaftingen, Estimates for L1-vector fields with a second order condition, Acad. Roy. Belg. Bull. Cl. Sci. (6) 15 (2004), no. 1-6, 103-112.
[40] J. Van Schaftingen, Limiting fractional and Lorentz space estimates of di¤erential forms, Proc. Amer. Math. Soc. 138 (2010), no. 1, 235-240, doi:10.1090/S0002-9939-09-10005-9. · Zbl 1184.35012
[41] J. Van Schaftingen, Limiting Sobolev inequalities for vector fields and canceling linear di¤erential operators, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 3, 877-921, doi:10.4171/JEMS/380. · Zbl 1284.46032
[42] J. Van Schaftingen, Limiting Bourgain-Brezis estimates for systems of linear di¤erential equations: theme and variations, J. Fixed Point Theory Appl. 15 (2014), no. 2, 273-297,doi:10.1007/s11784-014-0177-0. · Zbl 1311.35005
[43] W. P. Ziemer, Weakly di¤erentiable functions: Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics, vol. 120, Springer, New York, 1989. · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.