Chuma, Furaha; Mwanga, Gasper Godson; Masanja, Verdiana Grace Application of optimal control theory to Newcastle disease dynamics in village chicken by considering wild birds as reservoir of disease virus. (English) Zbl 1442.92159 J. Appl. Math. 2019, Article ID 3024965, 14 p. (2019). Summary: In this study, an optimal control theory was applied to a nonautonomous model for Newcastle disease transmission in the village chicken population. A notable feature of this model is the inclusion of environment contamination and wild birds, which act as reservoirs of the disease virus. Vaccination, culling, and environmental hygiene and sanitation time dependent control strategies were adopted in the proposed model. This study proved the existence of an optimal control solution, and the necessary conditions for optimality were determined using Pontryagin’s Maximum Principle. The numerical simulations of the optimal control problem were performed using the forward-backward sweep method. The results showed that the use of only the environmental hygiene and sanitation control strategy has no significant effect on the transmission dynamics of the Newcastle disease. Additionally, the combination of vaccination and environmental hygiene and sanitation strategies reduces more number of infected chickens and the concentration of the Newcastle disease virus in the environment than any other combination of control strategies. Furthermore, a cost-effective analysis was performed using the incremental cost-effectiveness ratio method, and the results showed that the use of vaccination alone as the control measure is less costly compared to other control strategies. Hence, the most effective way to minimize the transmission rate of the Newcastle disease and the operational costs is concluded to be the timely vaccination of the entire population of the village chicken, improvement in the sanitation of facilities, and the maintenance of a hygienically clean environment. Cited in 4 Documents MSC: 92D30 Epidemiology 49K15 Optimality conditions for problems involving ordinary differential equations 49N90 Applications of optimal control and differential games × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Alexander, D. J.; Manvell, R. J.; Lowings, J. P.; Frost, K. M.; Collins, M. S.; Russell, P. H.; Smith, J. E., Antigenic diversity and similarities detected in avian paramyxovirus type 1 (Newcastle disease virus) isolates using monoclonal antibodies, Avian Pathology, 26, 2, 399-418 (1997) · doi:10.1080/03079459708419222 [2] Czeglédi, A.; Ujvári, D.; Somogyi, E.; Wehmann, E.; Werner, O.; Lomniczi, B., Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolutionary implications, Virus Research, 120, 1-2, 36-48 (2006) · doi:10.1016/j.virusres.2005.11.009 [3] Khan, M. Y.; Arshad, M.; Mahmood, M. S.; Hussain, I., Epidemiology of Newcastle disease in rural poultry in Faisalabad, Pakistan, International Journal of Agriculture and Biology, 13, 4, 491-497 (2011) [4] Sharif, A.; Ahmad, T.; Umer, M., Prevention and control of newcastle disease, International Journal of Agriculture Innovations and Research, 3, 2, 454-460 (2014) [5] Yongolo, M.; Machangu, A. M.; Minga, U., Newcastle disease and infectious bursal disease among free-range village chickens in Tanzania, Characteristics and Parameters of Family Poultry Production in Africa (2002), Vienna, Italy: IAEA, Vienna, Italy [6] Yongolo, M. G.; Christensen, H.; Handberg, K.; Minga, U.; Olsen, J. E., On the origin and diversity of Newcastle disease virus in Tanzania, Onderstepoort Journal of Veterinary Research, 78, 1, 1-8 (2011) [7] Alexander, D. J.; Bell, J. G.; Alders, R. G., A Technology Review: Newcastle Disease, with Special Emphasis on its Effect on Village Chickens. A Technology Review: Newcastle Disease, with Special Emphasis on its Effect on Village Chickens, 161 (2004), Food and Agriculture Organization [8] McDermott, J.; Coleman, P.; Randolph, T., Methods for assessing the impact of infectious diseases of livestock-their role in improving the control of newcastle disease in Southern Africa, Proceedings of the ACIAR proceedings, ACIAR [9] Oluwayelu, D. O.; Adebiyi, A. I.; Olaniyan, I.; Ezewele, P.; Aina, O., Occurrence of newcastle disease and infectious bursal disease virus antibodies in double-spurred francolins in Nigeria, Journal of Veterinary Medicine, 2014 (2014) [10] Dortmans, J. C.; Koch, G.; Rottier, P. J.; Peeters, B. P., Virulence of newcastle disease virus: what is known so far?, Veterinary Research, 42, 1, article 122 (2011) · doi:10.1186/1297-9716-42-122 [11] Gilchrist, P., Involvement of free-flying wild birds in the spread of the viruses of avian influenza, Newcastle disease and infectious bursal disease from poultry products to commercial poultry, World’s Poultry Science Journal, 61, 2, 198-214 (2005) · doi:10.1079/WPS200451 [12] Chuma, F.; Mwanga, G. G.; Kajunguri, D., Modeling the role of wild birds and environment in the dynamics of newcastle disease in village chicken, Asian Journal of Mathematics and Application, 2018, 446, 23 (2018) [13] Knueppel, D.; Coppolillo, P.; Msago, A.; Msoffe, P.; Mutekanga, D.; Cardona, C., Improving poultry production for sustainability in the Ruaha landscape, Tanzania, Wildlife Conservation Society TransLinks Program (2009) [14] Blayneh, K. W.; Cao, Y.; Kwon, H. D., Optimal control of vector-borne diseases: treatment and prevention, Discrete and Continuous Dynamical Systems - Series B, 11, 3, 587-611 (2009) · Zbl 1162.92034 · doi:10.3934/dcdsb.2009.11.587 [15] Athithan, S.; Ghosh, M., Stability analysis and optimal control of a malaria model with larvivorous fish as biological control agent, Applied Mathematics & Information Sciences, 9, 4, 1893-1913 (2015) [16] Chuma, F.; Mwanga, G. G.; Masanja, V. G., Mathematical modeling and optimal control of malaria [Ph.D. thesis] (2014), Acta Lappeenranta University [17] Otieno, G.; Koske, J. K.; Mutiso, J. M., Cost effectiveness analysis of optimal malaria control strategies in Kenya, Mathematics, 4, 1, article 14 (2016) · Zbl 1376.92069 [18] Mpeshe, S. C.; Luboobi, L. S.; Nkansah-gyekye, Y., Optimal control strategies for the dynamics of rift valley fever, Communications in Optimization Theory, 3, 1-18 (2014) · Zbl 1307.92349 [19] Kahuru, J.; Luboobi, L. S.; Nkansah-Gyekye, Y., Optimal control techniques on a mathematical model for the dynamics of tungiasis in a community, International Journal of Mathematics and Mathematical Sciences, 2017 (2017) · Zbl 1403.92294 · doi:10.1155/2017/4804897 [20] Hugo, A.; Makinde, O. D.; Kumar, S.; Chibwana, F. F., Optimal control and cost effectiveness analysis for Newcastle disease eco-epidemiological model in Tanzania, Journal of Biological Dynamics, 11, 1, 190-209 (2017) · Zbl 1447.92222 · doi:10.1080/17513758.2016.1258093 [21] Seidu, B.; Makinde, O., Optimal control of HIV/AIDS in the workplace in the presence of careless individuals, Computational and Mathematical Methods in Medicine, 2014 (2014) · Zbl 1307.92354 · doi:10.1155/2014/831506 [22] Alexander, D. J., Newcastle disease diagnosis, Newcastle Disease. Newcastle Disease, Developments in Veterinary Virology, 8, 147-160 (1988), Mass, USA: Springer US, Mass, USA · doi:10.1007/978-1-4613-1759-3_9 [23] Nannyonga, B.; Mwanga, G. G.; Luboobi, L. S., An optimal control problem for ovine brucellosis with culling, Journal of Biological Dynamics, 9, 1, 198-214 (2015) · Zbl 1443.92181 · doi:10.1080/17513758.2015.1056845 [24] Niu, H. G. T.; Papelis, Y., Valley fever countermeasures, Investigations into Living Systems, Artificial Life and Real-world Solutions, 67 (2013) [25] Lucchetti, J.; Roy, M.; Martcheva, M., An avian influenza model and its fit to human avian influenza cases, Advances in Disease Epidemiology, 1-30 (2009), New York, NY, USA: Nova Science Publishers, New York, NY, USA [26] Richard, A. Y.; Mirabeau, T. Y.; Tony, O. I.; Solomon, C. C.; Samsom, E. S.; Ayodeji, O. O., Evaluation of the efficacy of newcastle disease (lasota) live vaccines sold in jos, plateau state, nigeria, European Scientific Journal ESJ, 10, 27 (2014) [27] Perry, B. D.; Kalpravidh, W.; Coleman, P. G.; Horst, H. S.; McDermott, J. J.; Randolph, T. F.; Gleeson, L. J., The economic impact of foot and mouth disease and its control in south-east asia: a preliminary assessment with special reference to thailand, Technical scientific Review, office of Epizootic diseases, 18, 2, 478-497 (1999) · doi:10.20506/rst.18.2.1163 [28] Daut, E. F.; Lahodny Jr., G.; Peterson, M. J.; Ivanek, R., Interacting effects of newcastle disease transmission and illegal trade on a wild population of white-winged parakeets in Peru: a modeling approach, PLoS ONE, 11, 1 (2016) [29] Bornaa, C. S.; Makinde, O. D.; Seini, I. Y., Eco-epidemiological model and optimal control of disease transmission between humans and animals, Communications in Mathematical Biology and Neuroscience, 2015 (2015) [30] Roy, P.; Venugopalan, A. T.; Manvell, R., Characterization of newcastle disease viruses isolated from chickens and ducks in Tamilnadu, India, Veterinary Research Communications, 24, 2, 135-142 (2000) · doi:10.1023/A:1006416724050 [31] Dimitrov, K. M.; Afonso, C. L.; Yu, Q.; Miller, P. J., Newcastle disease vaccines—A solved problem or a continuous challenge?, Veterinary Microbiology, 206, 126-136 (2017) · doi:10.1016/j.vetmic.2016.12.019 [32] Vrdoljak, A.; Halas, M.; Süli, T., Vaccination of broilers against Newcastle disease in the presence of maternally derived antibodies, Tierärztliche Praxis Ausgabe G: Grosstiere - Nutztiere, 45, 3, 151-158 (2017) · doi:10.15653/TPG-160661 [33] Neilan, R. L. M.; Schaefer, E.; Gaff, H.; Fister, K. R.; Lenhart, S., Modeling optimal intervention strategies for cholera, Bulletin of Mathematical Biology, 72, 8, 2004-2018 (2010) · Zbl 1201.92045 · doi:10.1007/s11538-010-9521-8 [34] Okosun, K. O.; Rachid, O.; Marcus, N., Optimal control strategies and cost-effectiveness analysis of a malaria model, BioSystems, 111, 2, 83-101 (2013) · doi:10.1016/j.biosystems.2012.09.008 [35] Ozair, M.; Lashari, A. A.; Jung, I. H.; Okosun, K. O., Stability analysis and optimal control of a vector-borne disease with nonlinear incidence, Discrete Dynamics in Nature and Society, 2012 (2012) · Zbl 1253.93090 · doi:10.1155/2012/595487 [36] Rodrigues, P.; Silva, C. J.; Torres, D. F. M., Cost-effectiveness analysis of optimal control measures for tuberculosis, Bulletin of Mathematical Biology, 76, 10, 2627-2645 (2014) · Zbl 1330.92133 · doi:10.1007/s11538-014-0028-6 [37] Ahmed, I. H.; Witbooi, P. J.; Patidar, K., Modeling the dynamics of an epidemic under vaccination in two interacting populations, Journal of Applied Mathematics, 2012 (2012) · Zbl 1251.93088 · doi:10.1155/2012/275902 [38] Anita, S.; Capasso, V.; Arnautu, V., An Introduction to Optimal Control Problems in Life Sciences and Economics: From Mathematical Models to Numerical Simulation with MATLAB (2011), Springer · Zbl 1206.49001 [39] Lenhart, S.; Workman, J. T., Optimal Control Applied to Biological Models (2007), CRC Press · Zbl 1291.92010 [40] Fleming, W. H.; Rishel, R. W., Optimal Deterministic and Stochastic Control. Optimal Deterministic and Stochastic Control, Applications of Mathematics (1975), Berlin, Germany: Springer, Berlin, Germany · Zbl 0323.49001 [41] Collins, C.; Fister, K. R.; Key, B.; Williams, M., Blasting neuroblastoma using optimal control of chemotherapy, Mathematical Biosciences and Engineering, 6, 3, 451-467 (2009) · Zbl 1170.49002 · doi:10.3934/mbe.2009.6.451 [42] Mlay, G. M.; Luboobi, L.; Kuznetsov, D.; Shahada, F., Optimal treatment and vaccination control strategies for the dynamics of pulmonary tuberculosis, International Journal of Advances in Applied Mathematics and Mechanics, 2, 3, 196-207 (2015) · Zbl 1359.92075 [43] Asamoah, J. K. K.; Oduro, F. T.; Bonyah, E.; Seidu, B., Modelling of rabies transmission dynamics using optimal control analysis, Journal of Applied Mathematics, 2017 (2017) · Zbl 1437.92109 · doi:10.1155/2017/2451237 [44] Joshi, H. R.; Lenhart, S.; Li, M. Y.; Wang, L., Optimal control methods applied to disease models, Contemporary Mathematics, 410, 187-207 (2006) · Zbl 1148.49018 · doi:10.1090/conm/410/07728 [45] Kar, T.; Ghosh, B., Sustainability and optimal control of an exploited prey predator system through provision of alternative food to predator, Biosystems, 109, 2, 220-232 (2012) · doi:10.1016/j.biosystems.2012.02.003 [46] Hove-Musekwa, S. D.; Nyabadza, F.; Mambili-Mamboundou, H.; Chiyaka, C.; Mukandavire, Z., Cost-effectiveness analysis of hospitalization and home-based care strategies for people living with hiv/aids: the case of Zimbabwe, International Scholarly Research Notices, 2014 (2014) [47] Tilahun, G. T.; Makinde, O. D.; Malonza, D., Modelling and optimal control of typhoid fever disease with cost-effective strategies, Computational and Mathematical Methods in Medicine, 2017 (2017) · Zbl 1397.92683 · doi:10.1155/2017/2324518 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.