Costa, Edgar; Fité, Francesc; Sutherland, Andrew V. Arithmetic invariants from Sato-Tate moments. (Invariants arithmétiques provenant des moments de Sato-Tate.) (English. French summary) Zbl 1444.11127 C. R., Math., Acad. Sci. Paris 357, No. 11-12, 823-826 (2019). Summary: We give some arithmetic-geometric interpretations of the moments \(\operatorname{M}_2 [a_1]\), \(\operatorname{M}_1 [a_2]\), and \(\operatorname{M}_1 [s_2]\) of the Sato-Tate group of an abelian variety \(A\) defined over a number field by relating them to the ranks of the endomorphism ring and Néron-Severi group of \(A\). Cited in 6 Documents MSC: 11G10 Abelian varieties of dimension \(> 1\) 14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) 14K15 Arithmetic ground fields for abelian varieties 11M50 Relations with random matrices Keywords:Sato-Tate group; abelian variety; Néron-Severi group × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Banaszak, G.; Kedlaya, K. S., An algebraic Sato-Tate group and Sato-Tate conjecture, Indiana Univ. Math. J., 64, 245-274 (2015) · Zbl 1392.11041 [2] Cantoral Farfán, V.; Commelin, J., The Mumford-Tate conjecture implies the algebraic Sato-Tate conjecture of Banaszak and Kedlaya · Zbl 1506.14094 [3] Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., 73, 349-366 (1983) · Zbl 0588.14026 [4] Fité, F.; Kedlaya, K. S.; Sutherland, A. V.; Rotger, V., Sato-Tate distributions and Galois endomorphism modules in genus 2, Compos. Math., 148, 1390-1442 (2012) · Zbl 1269.11094 [5] Kim, S., The Sato-Tate conjecture and Nagao’s conjecture · Zbl 1529.11077 [6] Mumford, D., Abelian Varieties (1970), Tata Institute of Fundamental Research, Bombay, Oxford University Press · Zbl 0198.25801 [7] Serre, J.-P., Linear Representations of Finite Groups (1977), Springer-Verlag: Springer-Verlag New York · Zbl 0355.20006 [8] Serre, J.-P., Lectures on \(N_X(p) (2012)\), CRC Press: CRC Press Boca Raton, FL, USA · Zbl 1238.11001 [9] Tate, J., Algebraic cycles and poles of zeta functions, (Arithmetical Algebraic Geometry, Proceedings of a Conference Held at Purdue University, IN, USA. Arithmetical Algebraic Geometry, Proceedings of a Conference Held at Purdue University, IN, USA, 5-7 December 1963 (1965), Harper & Row: Harper & Row New York), 93-110 · Zbl 0213.22804 [10] Tate, J., Endomorphisms of abelian varieties over finite fields, Invent. Math., 2, 134-144 (1966) · Zbl 0147.20303 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.