×

Random environment binomial thinning integer-valued autoregressive process with Poisson or geometric marginal. (English) Zbl 1445.62232

Summary: To predict time series of counts with small values and remarkable fluctuations, an available model is the \(r\) states random environment process based on the negative binomial thinning operator and the geometric marginal. However, we argue that the aforementioned model may suffer from the following two drawbacks. First, under the condition of no prior information, the overdispersed property of the geometric distribution may cause the predictions fluctuate greatly. Second, because of the constraints on the model parameters, some estimated parameters are close to zero in real-data examples, which may not objectively reveal the correlation relationship. For the first drawback, an \(r\) states random environment process based on the binomial thinning operator and the Poisson marginal is introduced. For the second drawback, we propose a generalized \(r\) states random environment integer-valued autoregressive model based on the binomial thinning operator to model fluctuations of data. Yule-Walker and conditional maximum likelihood estimates are considered and their performances are assessed via simulation studies. Two real-data sets are conducted to illustrate the better performances of the proposed models compared with some existing models.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
62P25 Applications of statistics to social sciences
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] Al-Osh, M. A. and Alzaid, A. A. (1987). First order integer-valued autoregressive \(( \operatorname{INAR}(1))\) processes. Journal of Time Series Analysis 8, 261-275. · Zbl 0617.62096 · doi:10.1111/j.1467-9892.1987.tb00438.x
[2] Anderson, T. W. and Goodman, L. A. (1957). Statistical inference about Markov chains. The Annals of Mathematical Statistics 28, 89-110. · Zbl 0087.14905 · doi:10.1214/aoms/1177707039
[3] Barczy, M., Ispány, M. and Pap, G. (2011). Asymptotic behavior of unstable \(\operatorname{INAR}(p)\) processes. Stochastic Processes and Their Applications 121, 583-608. · Zbl 1241.62122
[4] Bu, R., McCabe, B. P. M. and Hadri, K. (2008). Maximum likelihood estimation of higher-order integer-valued autoregressive processes. Journal of Time Series Analysis 29, 973-994. · Zbl 1198.62090 · doi:10.1111/j.1467-9892.2008.00590.x
[5] Drost, F. C., van den Akker, R. and Werker, B. J. M. (2008). Local asymptotic normality and efficient estimation for \(\operatorname{INAR}(p)\) models. Journal of Time Series Analysis 29, 783-801. · Zbl 1199.62007 · doi:10.1111/j.1467-9892.2008.00581.x
[6] Drost, F. C., van den Akker, R. and Werker, B. J. M. (2009). Efficient estimation of auto-regression parameters and innovation distributions for semiparametric integer-valued \(\operatorname{AR}(p)\) models. Journal of the Royal Statistical Society, Series B, Statistical Methodology 71, 467-485. · Zbl 1248.62147 · doi:10.1111/j.1467-9868.2008.00687.x
[7] Jazi, M. A., Jones, G. and Lai, C. D. (2012). First-order integer valued AR processes with zero inflated Poisson innovations. Journal of Time Series Analysis 33, 954-963. · Zbl 1281.62197 · doi:10.1111/j.1467-9892.2012.00809.x
[8] Joe, H. (1996). Time series models with univariate margins in the convolution-closed infinitely divisible class. Journal of Applied Probability 33, 664-677. · Zbl 0865.60029 · doi:10.2307/3215348
[9] Laketa, P. N., Nastić, A. S. and Ristić, M. M. (2018). Generalized random environment INAR models of higher order. Mediterranean Journal of Mathematics 15. · Zbl 06860529 · doi:10.1007/s00009-017-1054-z
[10] Latour, A. (1998). Existence and stochastic structure of a non-negative integer-valued autoregressive processes. Journal of Time Series Analysis 4, 439-455. · Zbl 1127.62402 · doi:10.1111/1467-9892.00102
[11] Li, H., Yang, K., Zhao, S. and Wang, D. (2018). First-order random coefficients integer-valued threshold autoregressive processes. AStA Advances in Statistical Analysis 102, 305-331. · Zbl 1421.62125 · doi:10.1007/s10182-017-0306-3
[12] McCabe, B. P. M., Martin, G. M. and Harris, D. (2011). Efficient probabilistic forecasts for counts. Journal of the Royal Statistical Society, Series B, Statistical Methodology 73, 253-272. · Zbl 1411.62086 · doi:10.1111/j.1467-9868.2010.00762.x
[13] McKenzie, E. (1986). Autoregressive moving-average processes with negative binomial and geometric distributions. Advances in Applied Probability 18, 679-705. · Zbl 0603.62100 · doi:10.2307/1427183
[14] Nastić, A. S., Laketa, P. N. and Ristić, M. M. (2016). Random environment integer-valued autoregressive process. Journal of Time Series Analysis 37, 267-287. · Zbl 1416.62517 · doi:10.1111/jtsa.12161
[15] Nastić, A. S., Laketa, P. N. and Ristić, M. M. (2018). Random environment INAR models of higher order. REVSTAT Statistical Journal. To appear. · Zbl 06860529 · doi:10.1007/s00009-017-1054-z
[16] Pedeli, X., Davison, A. C. and Fokianos, K. (2015). Likelihood estimation for the \(\operatorname{INAR}(p)\) model by saddlepoint approximation. Journal of the American Statistical Association 110, 1229-1238. · Zbl 1373.62453 · doi:10.1080/01621459.2014.983230
[17] Qi, X., Li, Q. and Zhu, F. (2019). Modeling time series of count with excess zeros and ones based on \(\operatorname{INAR}(1)\) model with zero-and-one inflated Poisson innovations. Journal of Computational and Applied Mathematics 346, 572-590. · Zbl 1405.62119 · doi:10.1016/j.cam.2018.07.043
[18] Steutel, F. W. and van Harn, K. (1979). Discrete analogues of self-decomposability and stability. Annals of Probability 7, 893-899. · Zbl 0418.60020 · doi:10.1214/aop/1176994950
[19] Tang, M. and Wang, Y. (2014). Asymptotic behavior of random coefficient INAR model under random environment defined by difference equation. Advances in Difference Equations 2014, 99. · Zbl 1343.60103 · doi:10.1186/1687-1847-2014-99
[20] Weiß, C. H. (2018). An Introduction to Discrete-Valued Time Series. Chichester: John Wiley & Sons. · Zbl 1407.62009
[21] Zheng, H. · Zbl 1126.62086 · doi:10.1111/j.1467-9892.2006.00472.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.