×

The role of acidity in solid tumour growth and invasion. (English) Zbl 1445.92082

Summary: Acidic pH is a common characteristic of human tumours. It has a significant impact on tumour progression and response to therapies. In this paper, we develop a simple model of three-dimensional tumour growth to examine the role of acidosis in the interaction between normal and tumour cell populations. Both vascular and avascular tumour dynamics are investigated, and a number of different behaviours are observed. Whilst an avascular tumour always proceeds to a benign steady state, a vascular tumour may display either benign or invasive dynamics, depending on the value of a critical parameter. Analysis of the model allows us to assess novel therapies directed towards changing the level of acidity within the tumour.

MSC:

92C32 Pathology, pathophysiology
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Burton, A. C., Rate of growth of solid tumours as a problem of diffusion, Growth, 30, 157-176 (1966)
[2] Byrne, H. M., A weakly nonlinear analysis of a model of avascular solid tumour growth, J. Math. Biol., 39, 59-89 (1999)
[3] Casciari, J. J.; Sotirchos, S. V.; Sutherland, R. M., Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH, J. Cell Physiol., 151, 386-394 (1992)
[4] Corless, R. M.; Gonnet, G. H.; Hare, D. E.G.; Jeffrey, D. J.; Knuth, D. E., On the Lambert W function, Adv. Comp. Math., 5, 329-359 (1996)
[5] Cross, S. S.; Bury, J. P.; Silcocks, P. B.; Stephenson, T. J.; Cotton, D. W.K., Fractal geometic analysis of colorectal polyps, J. Pathol., 172, 317-323 (1994)
[6] Dairkee, S. H.; Deng, S. H.; Stampfer, M. R.; Waldman, R. M.; Smith, H. S., Selective cell culture of primary breast cancer, Cancer Res., 35, 2516-2519 (1995)
[7] Fidler, I. J.; Hart, I. R., Biological diversity in metastatic neoplasms: origins and implications, Science, 217, 998-1003 (1982)
[8] Franks, S. J.; Byrne, H. M.; Underwood, J. C.; Lewis, C. E., Biological inferences from a mathematical model of comedo ductal carcinoma in situ of the breast, J. Theor. Biol., 232, 523-543 (2005)
[9] Gatenby, R. A.; Gawlinski, E. T., A reaction-diffusion model of cancer invasion, Cancer Res., 56, 5745-5753 (1996)
[10] Gatenby, R. A.; Gawlinski, E. T., The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models, Cancer Res., 63, 3847-3854 (2003)
[11] Gatenby, R. A.; Maini, P. K., Mathematical oncology: cancer summed up, Nature, 421, 321 (2003)
[12] Gatenby, R. A.; Gawlinski, E. T.; Tangen, C.; Flanigan, R. C., The possible role of post operative azotemia in enhanced survival of patients with metastatic renal cancer following cytoreductive nephrectomy, Cancer Res., 62, 5218-5222 (2002)
[13] Greenspan, H. P., Models for the growth of a solid tumor by diffusion, Stud. Appl. Math., 51, 317-340 (1972)
[14] Kelley, S. T.; Manon, C.; Buerk, D. G.; Bauer, T. W.; Fraker, D. L., Acidosis plus melphalan induces nitric oxide-mediated tumor regression in an isolated limb perfusion human melanoma xenograft model, Surgery, 132, 252-258 (2002)
[15] Kerangueven, F.; Noguchi, T.; Coulie, R. F.; Allione, F.; Wargniez, V.; Simony-Lafontaine, J.; Longy, M.; Jacquemier, J.; Sobol, H.; Eisinger, F.; Birnbaum, D., Genome-wide search for loss of heterozygosity shows extensive genetic diversity of human breast carcinomas, Cancer Res., 57, 5469-5474 (1997)
[16] Kunkel, M.; Reichert, T. E.; Benz, P.; Lehr, H.; Jeong, J.; Wieand, S.; Bartenstein, P.; Wagner, W.; Whiteside, T., Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma, Cancer, 97, 1015-1024 (2003)
[17] Laird, A. K., Dynamics of tumour growth, Br. J. Cancer, 18, 490-502 (1964)
[18] Martin, G. R.; Jain, R. K., Noninvasive measurement of interstitial pH profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy, Cancer Res., 54, 5670-5674 (1994)
[19] Martinez-Zaguilan, R.; Seftor, E. A.; Seftor, R. E.; Chu, Y. W.; Gillies, R. J.; Hendrix, M. J., Acidic pH enhances the invasive behavior of human melanoma cells, Clin. Exp. Metastasis, 14, 176-186 (1996)
[20] McElwain, D. L.S.; Morris, I. E., Apoptosis as a volume loss mechanism in mathematical models of solid tumor growth, Math. Biosci., 39, 147-157 (1978)
[21] Morita, T.; Nagaki, T.; Fukuda, I.; Okumura, K., Clastogenicity of low pH to various cultured mammalian cells, Mutat. Res., 268, 297-305 (1992)
[22] Patel, A. A.; Gawlinski, E. T.; Lemieux, S. K.; Gatenby, R. A., A cellular automaton model of early tumor growth and invasion, J. Theor. Biol., 213, 315-331 (2001)
[23] Raghunand, N.; Mahoney, B.; van Sluis, R.; Baggett, B.; Gillies, R. J., Acute metabolic alkalosis enhances response of C3h mouse mammary tumors to the weak base mitoxantrone, Neoplasia, 3, 227-235 (2001)
[24] Vaupel, P.; Kallinowski, F.; Okunieff, P., Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review, Cancer Res., 49, 6449-6465 (1989)
[25] Warburg, O., The Metabolism of Tumours (1930), Constable Press: Constable Press London
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.