×

An existence and uniqueness theorem for the dynamics of flexural shells. (English) Zbl 1446.74167

Summary: In this paper, we define, a priori, a natural two-dimensional model for a time-dependent flexural shell. As expected, this model takes the form of a set of hyperbolic variational equations posed over the space of admissible linearized inextensional displacements, and a set of initial conditions. Using a classical argument, we prove that the model under consideration admits a unique strong solution. However, the latter strategy makes use of function spaces, which are not amenable for numerically approximating the solution. We thus provide an alternate formulation of the studied problem using a suitable penalty scheme, which is more suitable in the context of numerical approximations. For the sake of completeness, in the final part of the paper, we also provide an existence and uniqueness theorem for the case where the linearly elastic shell under consideration is an elliptic membrane shell.

MSC:

74K25 Shells
74H20 Existence of solutions of dynamical problems in solid mechanics
74H25 Uniqueness of solutions of dynamical problems in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Huda, MN, Jumat, M, Islam, A. Flexural performance of reinforced oil palm shell and palm oil clinker concrete (PSCC) beam. Constr Build Mater 2016; 127: 18-25.
[2] Singh, VK, Mahapatra, TR, Subrata, P. Nonlinear flexural analysis of single/doubly curved smart composite shell panels integrated with PFRC actuator. Eur J Mech Solids 2016; 60: 300-314.
[3] Kar, V, Panda, S. Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel. Compos Struct 2015; 18(3): 693-709.
[4] Totaro, G . Flexural, torsional, and axial global stiffness properties of anisogrid lattice conical shells in composite material. Compos Struct 2016; 153: 738-745.
[5] Jayaprithika, A, Sekar, S. Stress-strain characteristics and flexural behaviour of reinforced eco-friendly coconut shell concrete. Constr Build Mater 2016; 117: 244-250.
[6] Ciarlet, PG, Destuynder, P. A justification of the two-dimensional linear plate model. J Méc 1979; 18: 315-344. · Zbl 0415.73072
[7] Ciarlet, PG, Miara, B. Justification of a two-dimensional shallow shell model in linearized elasticity. CR Acad Sci Paris, Sér I 1990; 311(9): 571-574. · Zbl 0707.73044
[8] Ciarlet, PG, Miara, B. Justification of the two-dimensional equations of a linearly elastic shallow shell. Commun Pure Appl Math 1992; 45(3): 327-360. · Zbl 0769.73050
[9] Ciarlet, PG, Lods, V. On the ellipticity of linear membrane shell equations. J Math Pures Appl 1996; 75: 107-124. · Zbl 0870.73037
[10] Ciarlet, PG, Lods, V. Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations. Arch Ration Mech Anal 1996; 136(2): 119-161. · Zbl 0887.73038
[11] Ciarlet, PG, Lods, V. Asymptotic analysis of linearly elastic shells. III. Justification of Koiter’s shell equations. Arch Ration Mech Anal 1996; 136(2): 191-200. · Zbl 0887.73040
[12] Ciarlet, PG, Lods, V. Asymptotic analysis of linearly elastic shells: ‘generalized membrane shells’. J Elast 1996; 43(2): 147-188. · Zbl 0891.73044
[13] Ciarlet, PG, Lods, V, Miara, B. Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations. Arch Ration Mech Anal 1996; 136(2): 163-190. · Zbl 0887.73039
[14] Ciarlet, PG, Mardare, C, Shen, X. Donati compatibility conditions for membrane and flexural shells. Anal Appl 2015; 13(6): 685-705. · Zbl 1344.49056
[15] Ciarlet, PG, Mardare, C, Piersanti, P. An obstacle problem for elliptic membrane shells. Math Mech Solids 2019; 24(5): 1503-1529. · Zbl 1440.74205
[16] Ciarlet, PG, Mardare, C, Piersanti, P. Un problème de confinement pour une coque membranaire linéairement élastique de type elliptique. CR Acad Sci Paris, Sér I 2018; 356(10): 1040-1051. · Zbl 1402.74067
[17] Ciarlet, PG, Piersanti, P. A confinement problem for a linearly elastic Koiter’s shell. CR Acad Sci Paris, Sér I 2019; 357: 221-230. · Zbl 1409.74029
[18] Ciarlet, PG, Piersanti, P. An obstacle problem for Koiter’s shells. Math Mech Solids 2019; 24(10): 3061-3079.
[19] Xiao, L . Asymptotic analysis of dynamic problems for linearly elastic shells – justification of equations for dynamic flexural shells. Chin Ann Math Ser B 2001; 22(3): 13-22. · Zbl 1037.74031
[20] Xiao, L . Asymptotic analysis of dynamic problems for linearly elastic shells – justification of equations for dynamic Koiter shells. Chin Ann Math Ser B 2001; 22(3): 267-274. · Zbl 0986.35022
[21] Ciarlet, PG . Mathematical elasticity. Vol. III: Theory of shells. Amsterdam: North-Holland, 2000.
[22] Ciarlet, PG . An introduction to differential geometry with applications to elasticity. Dordrecht: Springer, 2005. · Zbl 1100.53004
[23] Leoni, G . A first course in Sobolev spaces, (Graduate Studies in Mathematics, vol. 181), 2nd ed. Providence: American Mathematical Society, 2017. · Zbl 1382.46001
[24] Ciarlet, PG . Mathematical elasticity. Vol. I: Three-dimensional elasticity. Amsterdam: North-Holland, 1988.
[25] Koiter, WT . On the foundations of the linear theory of thin elastic shells. I. Nederl Akad Wetensch Proc Ser B 1970; 73, 169-182. · Zbl 0213.27002
[26] Koiter, WT . On the foundations of the linear theory of thin elastic shells. II. Nederl Akad Wetensch Proc Ser B 1970; 73: 183-195. · Zbl 0213.27002
[27] Bernadou, M, Ciarlet, PG. Sur l’ellipticité du modèle linéaire de coques de WT Koiter. In: Glowinski, R, Lions, JL (eds.) Computing methods in applied sciences and engineering (Lecture Notes in Economics and Mathematical Systems, vol. 134). Berlin: Springer, 1996, 89-136.
[28] Bernadou, M, Ciarlet, PG, Miara, B. Existence theorems for two-dimensional linear shell theories. J Elast 1994; 34: 111-138. · Zbl 0808.73045
[29] Gronwall, TH . Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann Math 1919; 20(4): 292-296. · JFM 47.0399.02
[30] Hartman, P . Ordinary differential equations, 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics, 1982. · Zbl 0476.34002
[31] Lions, JL . Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris: Dunod; Gauthier-Villars 1969.
[32] Raviart, P, Thomas, J. Introduction à l’analyse numérique des équations aux dérivées partielles. Paris: Dunod, 1988. · Zbl 0561.65069
[33] Brezzi, F, Fortin, M. Mixed and hybrid finite element methods. New York: Springer, 1991. · Zbl 0788.73002
[34] Ciarlet, PG . Introduction to numerical linear algebra and optimisation. Cambridge: Cambridge University Press, 1989.
[35] Ciarlet, PG . Linear and nonlinear functional analysis with applications. Philadelphia: Society for Industrial and Applied Mathematics, 2013. · Zbl 1293.46001
[36] Kyritsi-Yiallourou, S, Papageorgiou, NS. Handbook of applied analysis. New York: Springer, 2009. · Zbl 1189.49003
[37] Evans, LC . Partial differential equations, 2nd ed. Providence: American Mathematical Society, 2010. · Zbl 1194.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.