Chilin, V. I.; Karimov, J. A. Laterally complete \(C_\infty(Q)\)-modules. (Russian. English summary) Zbl 1448.46040 Vladikavkaz. Mat. Zh. 16, No. 2, 69-78 (2014). Summary: Let \(X\) be a regular laterally complete \(C_\infty(Q)\)-module and \(\mathcal B\) be a Boolean algebra whose Stone space is \(Q\). We introduce the passport \(\Gamma(X)\) for \(X\) consisting of uniquely defined partition of unity in \(\mathcal B\) and set of pairwise different cardinal numbers. It is proved that \(C_\infty(Q)\)-modules \(X\) and \(Y\) are isomorphic if and only if \(\Gamma(X)=\Gamma(Y)\). Cited in 1 Document MSC: 46H25 Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX) 16D10 General module theory in associative algebras Keywords:Hamel \(C_\infty(Q)\)-basis; homogeneous module; \(\sigma\)-finite-dimensional module PDF BibTeX XML Cite \textit{V. I. Chilin} and \textit{J. A. Karimov}, Vladikavkaz. Mat. Zh. 16, No. 2, 69--78 (2014; Zbl 1448.46040) Full Text: MNR