×

Combined observer-controller synthesis for electro-hydraulic servo system with modeling uncertainties and partial state feedback. (English) Zbl 1451.93125

Summary: Modeling uncertainties including parameter uncertainty and unmodeled dynamics hinder the development of high-performance tracking controller for hydraulic servo system. The observation for the unknown state is another issue worthy of attention. In this paper, a new seamless observer-controller scheme for hydraulic servo system is proposed with partial feedback. The position signal and the pressure signal are firstly used to build an extended structure estimation system for the unknown state. The advantage of this estimation system is that the state observer provides an extended structure for the parameter adaptation compared to other state observers. Thus the parameter uncertainty can be handled. An adaptive robust controller is synthesized in this paper which includes the adaptive part and the robust part. The adaptive part is used to eliminate the parameter uncertainty. Then the residuals coming from the parameter adaption and the errors coming from the state observation are taken into consideration in the robust part. Moreover, the unmodeled dynamics is also handled by the robust part. Theoretical analysis proves that a prescribed transient performance and the final tracking accuracy can be guaranteed by the proposed observer-controller scheme in the presence of both parameter uncertainty and unmodeled dynamics. Furthermore, the convergence of the closed-loop controller-observer system is achieved with the parametric uncertainty existed only. Extensive comparative experiments performed on a hydraulic actuator demonstrate the effectiveness of the proposed observer-controller scheme.

MSC:

93B52 Feedback control
93B50 Synthesis problems
93C41 Control/observation systems with incomplete information
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wang, L. T.; Gong, G. F.; Yang, H. Y.; Yang, X.; Hou, D. Q., The development of a high-speed segment erecting system for shield tunneling machine, IEEE-ASME Trans. Mechatron., 18, 6, 1713-1723, (2013)
[2] Sun, W.; Gao, H.; Kaynak, O., Adaptive backstepping control for active suspension systems with hard constraints, IEEE/ASME Trans. Mechatron., 18, 3, 1072-1079, (2013)
[3] Sente, P. A.; Labrique, F. M.; Alexandre, P. J., Efficient control of a piezoelectric linear actuator embedded into a servo-valve for aeronautic applications, IEEE Trans. Ind. Electron., 59, 4, 1971-1979, (2012)
[4] Yao, J.; Jiao, Z.; Han, S., Friction compensation for low velocity control of hydraulic flight motion simulator: a simple adaptive robust approach, Chin. J Aeronaut., 26, 3, 814-822, (2013)
[5] Merritt, H. E., Hydraulic control system, (1967), John Wiley & Sons New York
[6] Fitzsimons, P. M.; Palazzolo, J. J., Part II: control of a one-degree-of-freedom active hydraulic mount, J. Dyn. Syst. Meas. Control, 118, 3, (1996) · Zbl 0925.93258
[7] Yao, B.; Bu, F. P.; Chiu, G. T.C., Non-linear adaptive robust control of electro-hydraulic systems driven by double-rod actuators, Int. J. Control, 74, 8, 761-775, (2001) · Zbl 1015.93045
[8] Jerouane, M.; Sepehri, N.; Lamnabhi-Lagarrigue, F., Dynamic analysis of variable structure force control of hydraulic actuators via the reaching law approach, Int. J. Control, 77, 14, 1260-1268, (2007) · Zbl 1073.93554
[9] Ahn, K. K.; Dinh, Q. T., Self-tuning of quantitative feedback theory for force control of an electro-hydraulic test machine, Control Eng. Pr., 17, 11, 1291-1306, (2009)
[10] Li, X.; Yao, J.; Zhou, C., Adaptive robust output-feedback motion control of hydraulic actuators, Int. J. Adapt. Control Signal Process., 31, 11, 1544-1566, (2017) · Zbl 1386.93163
[11] Yao, J.; Deng, W., Active disturbance rejection adaptive control of hydraulic servo systems, IEEE Trans. Ind. Electron., 64, 10, 8023-8032, (2017)
[12] Ahn, K. K.; Nam, D. N.C.; Jin, M., Adaptive backstepping control of an electrohydraulic actuator, IEEE/ASME Tran. Mechatron., 19, 3, 987-995, (2014)
[13] Li, X.; Yao, J.; Zhou, C., Output feedback adaptive robust control of hydraulic actuator with friction and model uncertainty compensation, J. Frankl. Inst., 354, 13, 5328-5349, (2017) · Zbl 1395.93301
[14] Yao, J.; Deng, W.; Sun, W., Precision motion control for electro-hydraulic servo systems with noise alleviation: a desired compensation adaptive approach, IEEE/ASME Trans. Mechatron., 22, 4, 1859-1868, (2017)
[15] FitzSimons, P.; Palazzolo, J.; Part, I, Modeling of a one-degree-of-freedom active hydraulic mount, J. Dyn. Syst. Trans. ASME, 118, 3, 439-442, (1996) · Zbl 0925.93047
[16] FitzSimons, P.; Palazzolo, J., Part II: control of a one-degree-of-freedom active hydraulic mount, J. Dyn. Syst Trans. ASME, 118, 3, 443-448, (1996) · Zbl 0925.93258
[17] Vossoughi, G.; Donath, M., Dynamic feedback linearization for electrohydraulically actuated control systems, J. Dyn. Syst. Trans. ASME, 117, 4, 468-477, (1995)
[18] Deng, W.; Yao, J.; Ma, D., Robust adaptive precision motion control of hydraulic actuators with valve dead-zone compensation, ISA Trans., 70, 269-278, (2017)
[19] Xu, Z.; Ma, D.; Yao, J.; Ullah, N., Feedback nonlinear robust control for hydraulic system with disturbance compensation, (Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., 230, (2016)), 978-987
[20] Kim, W.; Won, D.; Shin, D.; Chung, C. C., Output feedback nonlinear control for electro-hydraulic systems, Mechatronics, 22, 6, 766-777, (2012)
[21] Guo, Q.; Yu, T.; Jiang, D., High-gain observer-based output feedback control of single-rod electro-hydraulic actuator, IET Control Theory Appl., 9, 16, 2395-2404, (2015)
[22] Yao, J.; Jiao, Z.; Ma, D., Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping, IEEE Trans. Ind. Electron., 61, 11, 6285-6293, (2014)
[23] Nakkarat, P.; Kuntanapreeda, S., Observer-based backstepping force control of an electrohydraulic actuator, Control Eng. Pract., 17, 8, 895-902, (2009)
[24] Yao, J.; Jiao, Z.; Ma, D.; Yan, L., High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties, IEEE/ASME Trans. Mechatron., 19, 2, 633-641, (2014)
[25] Khalil, H. K.; Praly, L., High gain observers in nonlinear feedback control, Int. J. Robust Nonlinear Control, 24, 6, 993-1015, (2014) · Zbl 1291.93054
[26] Xu, L.; Yao, B., Output feedback adaptive robust precision motion control of linear motors, Automatica, 37, 7, 1029-1039, (2001) · Zbl 0970.93573
[27] Zhao, X.; Yang, H.; Karimi, H. R.; Zhu, Y., Adaptive neural control of mimo nonstrict-feedback nonlinear systems with time delay, IEEE Trans. Cybern., 46, 6, 1337-1349, (2016)
[28] Zhao, X.; Shi, P.; Zheng, X., Fuzzy adaptive control design and discretization for a class of nonlinear uncertain systems, IEEE Trans. Cybern., 46, 6, 1476-1483, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.