×

Numerical modelling of moisture diffusion in FRP with clustered microstructures. (English) Zbl 1452.82031

Summary: This paper presents a numerical study of moisture propagation in fibre reinforced polymer (FRP) materials with spatial tortuosity. An algorithm for creation of microstructures with clustered fibre architecture is presented. Several controls for different characteristics of the clusters are described. Different statistical descriptors of geometry are used to quantify the clustering. A Fickian diffusion process has been modelled. The effect of clustering on moisture diffusion through the FRP is reported. It is observed that microstructures greatly affect the diffusion behaviour of the FRP. Correlation between moisture diffusion and the statistical descriptors has been examined. The statistical measures that depict the global characteristics of the microstructure are found to have a better correlation with time to saturate the representative volume element. The results should help in prediction of macroscopic response and durability of FRPs.

MSC:

82D60 Statistical mechanics of polymers
76R50 Diffusion
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mukherjee, A.; Arwikar, S., Performance of externally bonded GFRP rebars on concrete in tropical environments. Part I. Structural scale tests, ACI Struct. J., 102, 5, 745-753 (2006), , Title No. 102-S76
[2] Mukherjee, A.; Arwikar, S., Performance of externally bonded GFRP rebars in concrete in tropical environments. Part II. Micro structural tests, ACI Struct. J., 102, 6, 816-822 (2006), , Title No. 102-S82
[3] Melro, A. R.; Camanho, P. P.; Pinho, S. T., Generation of random distribution of fibres in long-fibre reinforced composites, Compos. Sci. Technol., 68, 9, 2092 (2008)
[4] Pyrz, R., Correlation of microstructure variability and local stress-field in 2-phase materials, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 177, 1-2, 253 (1994)
[5] Oh, J. H.; Jin, K. K.; Ha, S. K., Interfacial strain distribution of a unidirectional composite with randomly distributed fibres under transverse loading, J. Compos. Mater., 40, 9, 759 (2006)
[6] MacSleyne, J. P.; Simmons, J. P.; Graef, M. D., On the use of 2-D moment invariants for the automated classification of particle shapes, Acta Mater., 56, 3, 427 (2008)
[7] Wilding, S. E.; Fullwood, D. T., Clustering metrics for two-phase composites, Comput. Mater. Sci., 50, 2262 (2011)
[8] Sevostianov, I.; Kushch, V., Effect of pore distribution on the statistics of peak stress and overall properties of porous material, Int. J. Solids Struct., 46, 4419 (2009) · Zbl 1176.74151
[9] Okabe, T.; Takeda, N., Size effect on tensile strength of unidirectional CFRP composites— experiment and simulation, Compos. Sci. Technol., 62, 15, 2053 (2002)
[10] Vaughan, T. J.; McCarthy, C. T., Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites, Compos. Sci. Technol., 71, 388-396 (2011)
[11] Raghavan, P.; Li, S.; Ghosh, S., Two scale response and damage modeling of composite materials, Finite Elem. Anal. Des., 40, 1619 (2004)
[12] Segurado, J.; Gonzalez, C.; LLorca, J., A numerical investigation of the effect of particle clustering on the mechanical properties of composites, Acta Mater., 51, 2355 (2003)
[13] Bond, D. A., Moisture diffusion in a fibre-reinforced composite. Part I. Non-Fickian transport and the effect of fibre spatial distribution, J. Compos. Mater., 39, 2113 (2005)
[14] Boukhoulda, B. F.; Adda-Bedia, E.; Madani, K., The effect of fibre orientation angle in composite materials on moisture absorption and material degradation after hygrothermal ageing, Compos. Struct., 74, 406 (2006)
[15] Carter, H. G.; Kibler, H. G., Langmuir-type model for anomalous moisture diffusion in composite resins, J. Compos. Mater., 12, 118 (1978)
[17] Torquato, S., Nearest-neighbour statistics for packings of hard spheres and disks, Phys. Rev. E, 51, 3170 (1995)
[18] Zangenberg, J.; Larsen, J. B.; Østergaard, R. C.; Brøndsted, P., Methodology for characterisation of glass fibre composite architecture, Plast. Rubber Compos., 41, 4-5, 187 (2012)
[19] Clark, P. J.; Evans, F. C., Distance to nearest neighbour as a measure of spatial relationships in populations, Ecology, 35, 4, 445 (1954)
[20] Ripley, B. D., The second-order analysis of stationary point processes, J. Appl. Probab., 13, 255 (1976) · Zbl 0364.60087
[21] Ripley, B. D., Modelling spatial patterns, J. R. Stat. Soc. Ser. B, 39, 172 (1977) · Zbl 0369.60061
[22] Dixon, P. M., Ripley’s K Function. Encyclopedia of Environmetrics (2002), John Wiley & Sons Ltd., ISBN: 0471-899976
[23] Duncan, R. P., Testing for life historical changes in spatial patterns of four tropical tree species inWestland New Zealand, J. Ecol., 81, 403 (1993)
[24] Diggle, P. J.; Chetwynd, A. G., Second-order analysis of spatial clustering for inhomogeneous populations, Biometrics, 47, 1155 (1991)
[25] Doguwa, S. I.; Upton, G. J.G., Edge-corrected estimators for the reduced second moment measure of point processes, Biom. J., 31, 563 (1989)
[26] Diggle, P. J.; Gratton, R. J., Monte Carlo methods of inference for implicit statistical models, J. R. Stat. Soc. Ser. B, 46, 193 (1984) · Zbl 0561.62035
[27] Gaines, K. F.; Bryan, A. L.; Dixon, P. M., The effects of drought on foraging habitat selection in breeding wood storks in coastal Georgia, Waterbirds, 23, 64 (2000)
[28] Pyrz, R., Quantitative description of the microstructure of composites .Part 1: morphology of unidirectional composite systems, Compos. Sci. Technol., 50, 2, 197 (1994)
[29] Myles, J. P.; Flenley, E. C.; Fieller, N. R.J.; Atkinson, H. V.; Jones, H., Statistical tests for clustering of second phases in composite materials, Philos. Mag. A, 72, 2, 515 (1995)
[30] Romanov, V.; Stepan, V. L.; Yentl, S.; Svetlana, O.; Larissa, G.; Ignaas, V., Statistical analysis of real and simulated fibre arrangements in unidirectional composites, Compos. Sci. Technol., 87, 126 (2013)
[31] Shan, Z.; Gokhale, A. M., Representative volume element for non-uniform microstructure, Comput. Mater. Sci., 24, 3, 361 (2002)
[32] Vaddadi, P.; Nakamura, T.; Singh, R. P., Transient hygrothermal stresses in fibre reinforced composites: a heterogeneous characterization approach, Compos. Part A: Appl. Sci. Manuf., 34, 719 (2003)
[33] Joliff, Y.; Belec, L.; Heman, M. B.; Chailan, J. F., Experimental, analytical and numerical study of water diffusion in unidirectional composite materials - interphase impact, Comput. Mater. Sci., 64, 141 (2012)
[34] Joliff, Y.; Belec, L.; Chailan, J. F., Modified water diffusion kinetics in an unidirectional glass/fibre composite due to the interphase area: Experimental, analytical and numerical approach, Compos. Struct., 97, 296 (2013)
[35] Wang, W.; Sain, M.; Cooper, P. A., Study of moisture absorption in natural fibre plastic composites, Compos. Sci. Technol., 66, 379 (2006)
[37] Jain, D.; Mukherjee, A.; Kwatra, N., Local micromechanics of moisture diffusion in fiber reinforced polymer composites, Int. J. Heat Mass Transf., 76, 199 (2014)
[38] Jain, D.; Mukherjee, A.; Kwatra, N., Effect of fibre topology on hygro-mechanical response of polymer matrix composites, Int. J. Heat Mass Transf., 86, 787-795 (2015)
[39] Jain, D.; Mukherjee, A.; Kwatra, N., Topological disorder of microstructure in fibre-reinforced polymer composites: diffusion response, J. Reinf. Plast. Compos., 34, 1, 49-59 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.