×

Fitness-based models and pairwise comparison models of evolutionary games are typically different – even in unstructured populations. (English) Zbl 1452.91035

Summary: The modeling of evolutionary game dynamics in finite populations requires microscopic processes that determine how strategies spread. The exact details of these processes are often chosen without much further consideration. Different types of microscopic models, including in particular fitness-based selection rules and pairwise comparison dynamics, are often used as if they were interchangeable. We challenge this view and investigate how robust these choices on the micro-level really are. We focus on a key macroscopic quantity, the probability for a single mutant to take over a population of wild-type individuals. We show that even in unstructured populations there is only one pair of a fitness-based process and a pairwise comparison process leading to identical outcomes for arbitrary games and for all intensities of selection. This strong restriction is not relaxed even when the class of pairwise comparison processes is broadened. This highlights the perils of making arbitrary choices at the micro-level without regard of the consequences at the macro-level.

MSC:

91A22 Evolutionary games
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Nowak M A and Sigmund K 2004 Evolutionary dynamics of biological games Science303 793-9 · doi:10.1126/science.1093411
[2] Szabó G and Fáth G 2007 Evolutionary games on graphs Phys. Rep.446 97-216 · doi:10.1016/j.physrep.2007.04.004
[3] Roca C P, Cuesta J A and Sanchez A 2009 Evolutionary game theory: temporal and spatial effects beyond replicator dynamics Phys. Life Rev.6 208-49 · doi:10.1016/j.plrev.2009.08.001
[4] Perc M and Szolnoki A 2010 Coevolutionary games—a mini review Biosystems99 109-25 · doi:10.1016/j.biosystems.2009.10.003
[5] Helbing D 1993 Boltzmann-like and Boltzmann-Fokker-Planck equations as a foundation of behavioral models Physica A 196 546-73 · Zbl 0804.92030 · doi:10.1016/0378-4371(93)90034-2
[6] Traulsen A, Claussen J C and Hauert C 2005 Coevolutionary dynamics: from finite to infinite populations Phys. Rev. Lett.95 238701 · doi:10.1103/PhysRevLett.95.238701
[7] Antal T, Redner S and Sood V 2006 Evolutionary dynamics on degree-heterogeneous graphs Phys. Rev. Lett.96 188104 · doi:10.1103/PhysRevLett.96.188104
[8] Ohtsuki H, Nowak M A and Pacheco J M 2007 Breaking the symmetry between interaction and replacement in evolutionary dynamics on graphs Phys. Rev. Lett.98 108106 · doi:10.1103/PhysRevLett.98.108106
[9] van Segbroeck S, Santos F C, Lenaerts T and Pacheco J M 2009 Reacting differently to adverse ties promotes cooperation in social networks Phys. Rev. Lett.102 058105 · doi:10.1103/PhysRevLett.102.058105
[10] Black A J, Traulsen A and Galla T 2012 Mixing times in evolutionary game dynamics Phys. Rev. Lett.109 028101 · doi:10.1103/PhysRevLett.109.028101
[11] Nowak M A, Sasaki A, Taylor C and Fudenberg D 2004 Emergence of cooperation and evolutionary stability in finite populations Nature428 646-50 · doi:10.1038/nature02414
[12] Blume L E 1993 The statistical mechanics of strategic interaction Games Econ. Behav.5 387-424 · Zbl 0797.90123 · doi:10.1006/game.1993.1023
[13] Szabó G and Töke C 1998 Evolutionary prisoner’s dilemma game on a square lattice Phys. Rev. E 58 69-73 · doi:10.1103/physreve.58.69
[14] Bürger R 2000 The Mathematical Theory of Selection Recombination, and Mutation (New York: Wiley) · Zbl 0959.92018
[15] Wu B, Gokhale C S, van Veelen M, Wang L and Traulsen A 2013 Interpretations arising from Wrightian and Malthusian fitness under strong frequency dependent selection Ecology Evol.3 1276-80 · doi:10.1002/ece3.500
[16] Traulsen A, Nowak M A and Pacheco J M 2006 Stochastic dynamics of invasion and fixation Phys. Rev. E 74 011909 · doi:10.1103/PhysRevE.74.011909
[17] Karlin S and Taylor H M A 1975 A First Course in Stochastic Processes 2nd edn (London: Academic) · Zbl 0315.60016
[18] Ewens W J 1979 Mathematical Population Genetics (Berlin: Springer) · Zbl 0422.92011
[19] Fudenberg D and Imhof L A 2006 Imitation processes with small mutations J. Econ. Theory131 251-62 · Zbl 1142.91342 · doi:10.1016/j.jet.2005.04.006
[20] Wu B, Gokhale C S, Wang L and Traulsen A 2012 How small are small mutation rates? J. Math. Biol.64 803-27 · Zbl 1260.91025 · doi:10.1007/s00285-011-0430-8
[21] Fu F, Hauert C, Nowak M A and Wang L 2008 Reputation-based partner choice promotes cooperation in social networks Phys. Rev. E 78 026117 · doi:10.1103/PhysRevE.78.026117
[22] Sigmund K, de Silva H, Traulsen A and Hauert C 2010 Social learning promotes institutions for governing the commons Nature466 861-3 · doi:10.1038/nature09203
[23] Lessard S and Ladret V 2007 The probability of fixation of a single mutant in an exchangeable selection model J. Math. Biol.54 721-44 · Zbl 1115.92046 · doi:10.1007/s00285-007-0069-7
[24] Lessard S 2011 On the robustness of the extension of the one-third law of evolution to the multi-player game Dyn. Games Appl.1 408-18 · Zbl 1252.91017 · doi:10.1007/s13235-011-0010-y
[25] Wu B, García J, Hauert C and Traulsen A 2013 Extrapolating weak selection in evolutionary games PLoS Comput. Biol.9 e1003381 · doi:10.1371/journal.pcbi.1003381
[26] Hofbauer J and Sigmund K 1998 Evolutionary Games and Population Dynamics (Cambridge: Cambridge University Press) · Zbl 0914.90287 · doi:10.1017/CBO9781139173179
[27] Kurokawa S and Ihara Y 2009 Emergence of cooperation in public goods games Proc. R. Soc. B 276 1379-84 · doi:10.1098/rspb.2008.1546
[28] Gokhale C S and Traulsen A 2010 Evolutionary games in the multiverse Proc. Natl Acad. Sci. USA107 5500-4 · doi:10.1073/pnas.0912214107
[29] Gokhale C S and Traulsen A 2014 Evolutionary multiplayer games Dyn. Games Appl.4 468-88 · Zbl 1314.91033 · doi:10.1007/s13235-014-0106-2
[30] Peña J, Lehmann L and Nöldeke G 2014 Gains from switching and evolutionary stability in multi-player matrix games J. Theor. Biol.346 23-33 · Zbl 1412.91011 · doi:10.1016/j.jtbi.2013.12.016
[31] Traulsen A, Pacheco J M and Imhof L A 2006 Stochasticity and evolutionary stability Phys. Rev. E 74 021905 · doi:10.1103/PhysRevE.74.021905
[32] Wu B, Altrock P M, Wang L and Traulsen A 2010 Universality of weak selection Phys. Rev. E 82 046106 · doi:10.1103/PhysRevE.82.046106
[33] Hauert C 2002 Effects of space in 2 × 2 games Int. J. Bifurcation Chaos12 1531-48 · Zbl 1051.91002 · doi:10.1142/S0218127402005273
[34] Mullon C and Lehmann L 2014 The robustness of the weak selection approximation for the evolution of altruism against strong selection J. Evol. Biol.27 2272-82 · doi:10.1111/jeb.12462
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.