×

A Gaussian moment method for polydisperse multiphase flow modelling. (English) Zbl 1453.76217

Summary: The accurate prediction of multiphase flow when particles are differentiated by a set of “internal” variables, such as size or temperature, can pose modelling and numerical challenges. Although Lagrangian particle methods can provide predictive simulations of a wide spectrum of complex multiphase problems, they can become prohibitively expensive as the number of particles becomes large. Alternatively, Eulerian approaches have the potential to improve the computational efficiency of multiphase flows, but classical methods produce modelling artifacts or do not properly treat the local statistical dependence between the particle velocities and internal variables, or between the internal variables themselves. In this paper an extension is proposed of the classical Gaussian ten-moment model from gaskinetic theory to a model for the treatment of a dilute particle phase with an arbitrary number of internal variables based on an entropy-maximization argument. Unlike previous formulations, this new model provides a set of first-order robustly-hyperbolic balance laws that include a direct treatment for the local statistical variance of each variable, as well as the covariance between the internal variables or the internal variables and particle velocity. A study of the wave speeds of the general hyperbolic system is presented. To demonstrate an example application, the model is then specialized for polydisperse flows that are subject to viscous fluid drag as well as gravitational and buoyancy forces. The complete eigenstructure of this fifteen-moment polydisperse Gaussian model (PGM) is presented and the PGM is shown to maintain a physically realizable distribution function for all admissible initial conditions. Finally, several illustrative low-dimensional problems are studied to demonstrate the predictive capabilities of the new model.

MSC:

76T20 Suspensions

Software:

HLLE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Saurel, R.; Abgrall, R., A simple method for compressible multifluid flows, SIAM J. Sci. Comput., 21, 1115-1145 (1999) · Zbl 0957.76057
[2] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 425-467 (1999) · Zbl 0937.76053
[3] Fox, R. O., A quadrature-based third-order moment method for dilute gas-particle flows, J. Comput. Phys., 227, 6313-6350 (2008) · Zbl 1388.76247
[4] Passalacqua, A.; Fox, R. O.; Garg, R.; Subramaniam, S., A fully coupled quadrature-based moment method for dilute to moderately dilute fluid – particle flows, Chem. Eng. Sci., 65, 2267-2283 (2010)
[5] Vié, A.; Pouransari, H.; Zamansky, R.; Mani, A., Particle-laden flows forced by the disperse phase: comparison between Lagrangian and Eulerian simulations, Int. J. Multiph. Flow, 79, 144-158 (2016)
[6] Saurel, R.; Daniel, E.; Loraud, J. C., Two-phase flows: second-order schemes and boundary conditions, AIAA J., 32, 6, 1214-1221 (1994) · Zbl 0811.76051
[7] Slater, S. A.; Young, J. B., The calculation of inertial particle transport in dilute gas-particle flows, Int. J. Multiph. Flow, 27, 61-87 (2001) · Zbl 1137.76741
[8] Grad, H., On the kinetic theory of rarefied gases, Commun. Pure Appl. Math., 2, 331-407 (1949) · Zbl 0037.13104
[9] McDonald, J. G., Approximate maximum-entropy moment closures for gas dynamics, AIP Conf. Proc., 1786, 1, Article 140001 pp. (2016)
[10] McDonald, J. G.; Sachdev, J. S.; Groth, C. P.T., Application of Gaussian moment closure to microscale flows with moving embedded boundaries, AIAA J., 52, 1839-1857 (2014)
[11] Zaichik, L.; Alipchenkov, V. M.; Sinaiski, E. G., Particles in Turbulent Flows (2008), Willey-VCH
[12] Reeks, M. W., On a kinetic equation for the transport of particles in turbulent flows, Phys. Fluids A, 3, 3, 446-456 (1991) · Zbl 0719.76068
[13] Reeks, M. W., On the continuum equations for dispersed particles in nonuniform flows, Phys. Fluids A, 4, 6, 1290-1303 (1992) · Zbl 0781.76089
[14] Bragg, A.; Swailes, D. C.; Skartlien, R., Drift-free kinetic equations for turbulent dispersion, Phys. Rev. E, 86, 5, Article 056306 pp. (2012)
[15] Swailes, D. C.; Darbyshire, K. F.F., A generalized Fokker-Planck equation for particle transport in random media, Physica A, 242, 38-48 (1997)
[16] Michaelides, E.; Crowe, C. T.; Schwarzkopf, J., Multiphase Flow Handbook, 144-202 (2017), CRC Press
[17] Fox, R. O.; Laurent, F.; Massot, M., Numerical simulation of spray coalescence in an Eulerian framework: direct quadrature method of moments and multi-fluid method, J. Comput. Phys., 227, 3058-3088 (2008) · Zbl 1329.76257
[18] Fox, R. O., Higher-order quadrature-based moment methods for kinetic equations, J. Comput. Phys., 228, 7771-7791 (2009) · Zbl 1391.82049
[19] Vié, A.; Laurent, F.; Massot, M., Size-velocity correlations in hybrid high order moment/multi-fluid methods for polydisperse evaporating sprays: modeling and numerical issues, J. Comput. Phys., 237, 177-210 (2013)
[20] Massot, M.; Laurent, F.; Kah, D.; Chaisemartin, S. D., A robust moment method for evaluation of the disappearance rate of evaporating sprays, SIAM J. Appl. Math., 70, 8, 3203-3234 (2010) · Zbl 1214.35051
[21] Marchisio, D. L.; Pikturna, J. T.; Fox, R. O.; Vigil, R. D.; Barresi, A. A., Quadrature method of moments for population-balance equations, AIChE J., 49, 5, 1266-1276 (2003)
[22] Marchisio, D. L.; Fox, R. O., Solution of population balance equations using the direct quadrature method of moments, J. Aerosol Sci., 36, 1, 43-73 (2005)
[23] Yuan, C.; Fox, R. O., Conditional quadrature method of moments for kinetic equations, J. Comput. Phys., 230, 8216-8246 (2011) · Zbl 1231.82007
[24] Marchisio, D. L.; Fox, R. O., Computational Models for Polydisperse Particulate and Multiphase Systems (2013), Cambridge University Press
[25] Levermore, C. D., Moment closure hierarchies for kinetic theories, J. Stat. Phys., 83, 1021-1065 (1996) · Zbl 1081.82619
[26] Gombosi, T. I., Gaskinetic Theory (1994), Cambridge University Press: Cambridge University Press Cambridge
[27] Struchtrup, H., Macroscopic Transport Equations for Rarefied Gas Flows (2005), Springer-Verlag: Springer-Verlag Berlin · Zbl 1119.76002
[28] Kremer, G. M., An Introduction to the Boltzmann Equation and Transport Processes in Gases (2010), Springer-Verlag: Springer-Verlag Berlin · Zbl 1317.82002
[29] Williams, F. A., Spray combustion and atomization, Phys. Fluids, 1, 541-545 (1958) · Zbl 0086.41102
[30] Dreyer, W., Maximization of the entropy in non-equilibrium, J. Phys. A, Math. Gen., 20, 6505-6517 (1987) · Zbl 0633.76081
[31] Müller, I.; Ruggeri, T., Extended Thermodynamics (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0801.35141
[32] Müller, I., Thermodynamics (1985), Pitman Publishing: Pitman Publishing Boston · Zbl 0637.73002
[33] Levermore, C. D.; Morokoff, W. J., The Gaussian moment closure for gas dynamics, SIAM J. Appl. Math., 59, 1, 72-96 (1998) · Zbl 0922.76273
[34] Brown, S. L.; Roe, P. L.; Groth, C. P.T., Numerical Solution of a 10-Moment Model for Nonequilibrium Gasdynamics (1995), AIAA, Paper 95-1677
[35] Brown, S. L., Approximate Riemann Solvers for Moment Models of Dilute Gases (1996), University of Michigan, Ph.D. thesis
[36] McDonald, J. G., Extended Fluid-Dynamic Modelling for Numerical Solution of Micro-Scale (2011), University of Toronto, Ph.D. thesis
[37] Barth, T. J., On discontinuous Galerkin approximations of Boltzmann moment systems with Levermore closure, Comput. Methods Appl. Mech. Eng., 195, 3311-3330 (2006) · Zbl 1126.76027
[38] Suzuki, Y.; van Leer, B., Application of the 10-Moment Model to MEMS Flows (2005), AIAA, Paper 2005-1398
[39] Vié, A.; Doisneau, F.; Massot, M., On the anisotropic Gaussian velocity closure for inertial-particle laden flows, Commun. Comput. Phys., 17, 1, 1-46 (2015) · Zbl 1373.76329
[40] Hittinger, J. A., Foundation for the Generalization of the Godunov Method to Hyperbolic Systems with Stiff Relaxation Source Terms (2000), University of Michigan, Ph.D. thesis
[41] Lax, P. D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, CMBS-NSF Regional Conference Series in Applied Mathematics, vol. 11 (1973), SIAM: SIAM Philadelphia · Zbl 0268.35062
[42] Hinds, W., Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles (2012), Wiley
[43] Godunov, S. K., Finite-difference method for numerical computations of discontinuous solutions of the equations of fluid dynamics, Mat. Sb., 47, 271-306 (1959) · Zbl 0171.46204
[44] LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1010.65040
[45] Harten, A.; Lax, P. D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 1, 35-61 (1983) · Zbl 0565.65051
[46] Vié, A.; Pouransari, H.; Zamansky, R.; Mani, A., Comparison between Lagrangian and Eulerian methods for the simulation of particle-laden flows subject to radiative heating, (Annual Research Briefs (2014), Center for Turbulence Research), 15-27
[47] Laurent, F.; Massot, M., Multi-fluid modelling of laminar polydisperse spray flames: origin, assumptions and comparison of sectional and sampling methods, Combust. Theory Model., 5, 4, 537-572 (2001) · Zbl 1160.76419
[48] Fréret, L.; De Chaisemartin, S.; Reveillon, J.; Laurent, F.; Massot, M., Eulerian models and three-dimensional numerical simulation of polydisperse sprays, (Proceedings of the Seventh International Conference on Multiphase Flow. Proceedings of the Seventh International Conference on Multiphase Flow, Tampa, FL (2010), ICMF)
[49] Sachdev, J. S., Parallel Solution-Adaptive Method for Predicting Solid Propellant Rocket Motor Core Flows (2007), University of Toronto, Ph.D. thesis
[50] Xue, B.; Sun, Y., Modeling of sedimentation of polydisperse spherical beads with a broad size distribution, Chem. Eng. Sci., 58, 8, 1531-1543 (2003)
[51] Torrilhon, M., Characteristic waves and dissipation in the 13-moment-case, Contin. Mech. Thermodyn., 12, 289-301 (2000) · Zbl 0991.76073
[52] Au, J. D.; Torrilhon, M.; Weiss, W., The shock tube study in extended thermodynamics, Phys. Fluids, 13, 8, 2423-2432 (2001) · Zbl 1184.76037
[53] Junk, M., Domain of definition of Levermore’s five-moment system, J. Stat. Phys., 93, 5/6, 1143-1167 (1998) · Zbl 0952.82024
[54] McDonald, J. G.; Torrilhon, M., Affordable robust moment closures for CFD based on the maximum-entropy hierarchy, J. Comput. Phys., 251, 500-523 (2013) · Zbl 1349.82057
[55] Schärer, R.; Bansal, P.; Torrilhon, M., Efficient algorithms and implementations of entropy-based moment closures for rarefied gases, J. Comput. Phys., 340, 138-159 (2017) · Zbl 1376.76059
[56] Basson, D. K.; Berres, S.; Bürger, R., On models of polydisperse sedimentation with particle-size-specific hindered-settling factors, Appl. Math. Model., 33, 4, 1815-1835 (2009) · Zbl 1205.76265
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.