×

Statistical unfolding of elementary particle spectra: empirical Bayes estimation and bias-corrected uncertainty quantification. (English) Zbl 1454.62533

Summary: We consider the high energy physics unfolding problem where the goal is to estimate the spectrum of elementary particles given observations distorted by the limited resolution of a particle detector. This important statistical inverse problem arising in data analysis at the Large Hadron Collider at CERN consists in estimating the intensity function of an indirectly observed Poisson point process. Unfolding typically proceeds in two steps: one first produces a regularized point estimate of the unknown intensity and then uses the variability of this estimator to form frequentist confidence intervals that quantify the uncertainty of the solution. In this paper, we propose forming the point estimate using empirical Bayes estimation which enables a data-driven choice of the regularization strength through marginal maximum likelihood estimation. Observing that neither Bayesian credible intervals nor standard bootstrap confidence intervals succeed in achieving good frequentist coverage in this problem due to the inherent bias of the regularized point estimate, we introduce an iteratively bias-corrected bootstrap technique for constructing improved confidence intervals. We show using simulations that this enables us to achieve nearly nominal frequentist coverage with only a modest increase in interval length. The proposed methodology is applied to unfolding the \(Z\) boson invariant mass spectrum as measured in the CMS experiment at the Large Hadron Collider.

MSC:

62P35 Applications of statistics to physics

References:

[1] Aad, G. et al. (2012). Measurement of the transverse momentum distribution of W bosons in \(pp\) collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector. Phys. Rev. D 85 012005.
[2] Antoniadis, A. and Bigot, J. (2006). Poisson inverse problems. Ann. Statist. 34 2132-2158. · Zbl 1106.62035 · doi:10.1214/009053606000000687
[3] Bardsley, J. M. and Goldes, J. (2009). Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation. Inverse Probl. 25 095005. · Zbl 1176.68225 · doi:10.1088/0266-5611/25/9/095005
[4] Barney, D. (2004). CMS-doc-4172. Available at . Retrieved 21.1.2014.
[5] Beringer, J. et al. (2012). Review of particle physics. Phys. Rev. D 86 010001.
[6] Bishop, C. M. (2006). Pattern Recognition and Machine Learning . Springer, New York. · Zbl 1107.68072
[7] Blobel, V. (1985). Unfolding methods in high-energy physics experiments. In Proceedings of the 1984 CERN School of Computing (C. Verkern, ed.) CERN 85-09 88-127. CERN, Geneva.
[8] Blobel, V. (2013). Unfolding. In Data Analysis in High Energy Physics : A Practical Guide to Statistical Methods (O. Behnke, K. Kröninger, G. Schott and T. Schörner-Sadenius, eds.) 187-225. Wiley-VCH, Weinheim.
[9] Bochkina, N. (2013). Consistency of the posterior distribution in generalized linear inverse problems. Inverse Probl. 29 095010, 43. · Zbl 1408.65017 · doi:10.1088/0266-5611/29/9/095010
[10] Booth, J. G. and Hobert, J. P. (1999). Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. J. R. Stat. Soc. Ser. B. Stat. Methodol. 61 265-285. · Zbl 0917.62058 · doi:10.1111/1467-9868.00176
[11] Calvetti, D., Kaipio, J. P. and Someralo, E. (2006). Aristotelian prior boundary conditions. Int. J. Math. Comput. Sci. 1 63-81. · Zbl 1095.94005
[12] Carlin, B. P. and Louis, T. A. (2009). Bayesian Methods for Data Analysis , 3rd ed. CRC Press, Boca Raton, FL. · Zbl 1165.62003
[13] Casella, G. (2001). Empirical Bayes Gibbs sampling. Biostatistics 2 485-500. · Zbl 0891.65016 · doi:10.1137/S1064827595281800
[14] Chatrchyan, S. et al. (2008). The CMS experiment at the CERN LHC. Journal of Instrumentation 3 S08004.
[15] Chatrchyan, S. et al. (2009). Particle-flow event reconstruction in CMS and performance for jets, taus, and \({E}_{\mathrm{T}}^{\mathrm{miss}}\). CMS Physics Analysis Summary CMS-PAS-PFT-09-001.
[16] Chatrchyan, S. et al. (2012a). Shape, transverse size, and charged-hadron multiplicity of jets in \(pp\) collisions at \(\sqrt{s}=7\) TeV. J. High Energy Phys. 06 160.
[17] Chatrchyan, S. et al. (2012b). Measurement of the charge asymmetry in top-quark pair production in proton-proton collisions at \(\sqrt{s}=7\) TeV. Phys. Lett. B 709 28-49.
[18] Chatrchyan, S. et al. (2012c). Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716 30-61.
[19] Chatrchyan, S. et al. (2013). Energy calibration and resolution of the CMS electromagnetic calorimeter in \(pp\) collisions at \(\sqrt{s}=7\) TeV. Journal of Instrumentation 8 P09009.
[20] Choudalakis, G. (2012). Fully Bayesian unfolding. Available at [physics.data-an]. arXiv:1201.4612v4
[21] Cowan, G. (1998). Statistical Data Analysis . Oxford Univ. Press, London.
[22] D’Agostini, G. (1995). A multidimensional unfolding method based on Bayes’ theorem. Nuclear Instruments and Methods in Physics Research A 362 487-498.
[23] Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and Their Application. Cambridge Series in Statistical and Probabilistic Mathematics 1 . Cambridge Univ. Press, Cambridge. · Zbl 0886.62001
[24] de Boor, C. (2001). A Practical Guide to Splines , revised ed. Applied Mathematical Sciences 27 . Springer, New York. · Zbl 0987.65015
[25] de Boor, C. and Daniel, J. W. (1974). Splines with nonnegative \(B\)-spline coefficients. Math. Comp. 28 565-568. · Zbl 0278.41014 · doi:10.2307/2005928
[26] Dembinski, H. P. and Roth, M. (2011). ARU-Towards automatic unfolding of detector effects. In Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding (H. B. Prosper and L. Lyons, eds.) CERN-2011-006 285-291. CERN, Geneva.
[27] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B. Stat. Methodol. 39 1-38. · Zbl 0364.62022
[28] Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability 57 . Chapman & Hall, New York. · Zbl 0835.62038
[29] Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with \(B\)-splines and penalties. Statist. Sci. 11 89-121. · Zbl 0955.62562 · doi:10.1214/ss/1038425655
[30] Engl, H. W., Hanke, M. and Neubauer, A. (2000). Regularization of Inverse Problems . Kluwer Academic Publishers, Dordrecht. · Zbl 0859.65054
[31] Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1 515-533. · Zbl 1331.62139 · doi:10.1214/06-BA117A
[32] Geman, S. and McClure, D. E. (1985). Bayesian image analysis: An application to single photon emission tomography. In Proceedings of the Statistical Computing Section 12-18. Amer. Statist. Assoc., Alexandria, VA.
[33] Geman, S. and McClure, D. E. (1987). Statistical methods for tomographic image reconstruction. Bull. Inst. Internat. Statist. 52 5-21.
[34] Gilks, W. R. (1996). Full conditional distributions. In Markov Chain Monte Carlo in Practice (W. R. Gilks, S. Richardson and D. J. Spiegelhalter, eds.) 75-88. Chapman & Hall, London. · Zbl 0832.00018
[35] Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo in Practice . Chapman & Hall, London. · Zbl 0832.00018
[36] Goldstein, H. (1996). Consistent estimators for multilevel generalized linear models using an iterated bootstrap. Multilevel Modelling Newsletter 8 3-6.
[37] Höcker, A. and Kartvelishvili, V. (1996). SVD approach to data unfolding. Nuclear Instruments and Methods in Physics Research A 372 469-481.
[38] Javanmard, A. and Montanari, A. (2014). Confidence intervals and hypothesis testing for high-dimensional regression. J. Mach. Learn. Res. 15 2869-2909. · Zbl 1319.62145
[39] Kaipio, J. and Somersalo, E. (2005). Statistical and Computational Inverse Problems. Applied Mathematical Sciences 160 . Springer, New York. · Zbl 1068.65022
[40] Kuk, A. Y. C. (1995). Asymptotically unbiased estimation in generalized linear models with random effects. J. R. Stat. Soc. Ser. B. Stat. Methodol. 57 395-407. · Zbl 0813.62064
[41] Kuusela, M. and Panaretos, V. M. (2015). Supplement to “Statistical unfolding of elementary particle spectra: Empirical Bayes estimation and bias-corrected uncertainty quantification.” . · Zbl 1454.62533
[42] Lucy, L. B. (1974). An iterative technique for the rectification of observed distributions. Astronomical Journal 79 745-754.
[43] Lyons, L. (2011). Unfolding: Introduction. In Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding (H. B. Prosper and L. Lyons, eds.) CERN-2011-006 225-228. CERN, Geneva.
[44] Lyons, L. (2013). Bayes and frequentism: A particle physicist’s perspective. Contemporary Physics 54 1-16.
[45] McLachlan, G. J. and Krishnan, T. (2008). The EM Algorithm and Extensions , 2nd ed. Wiley, Hoboken, NJ. · Zbl 1165.62019 · doi:10.1002/9780470191613
[46] Meister, A. (2009). Deconvolution Problems in Nonparametric Statistics. Lecture Notes in Statistics 193 . Springer, Berlin. · Zbl 1178.62028 · doi:10.1007/978-3-540-87557-4
[47] Milke, N., Doert, M., Klepser, S., Mazin, D., Blobel, V. and Rhode, W. (2013). Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics. Nuclear Instruments and Methods in Physics Research A 697 133-147.
[48] Morozov, V. A. (1966). On the solution of functional equations by the method of regularization. Soviet Math. Dokl. 7 414-417. · Zbl 0187.12203
[49] Nychka, D. (1988). Bayesian confidence intervals for smoothing splines. J. Amer. Statist. Assoc. 83 1134-1143. · doi:10.1080/01621459.1988.10478711
[50] O’Sullivan, F. (1986). A statistical perspective on ill-posed inverse problems. Statist. Sci. 1 502-527. · Zbl 0625.62110 · doi:10.1214/ss/1177013525
[51] O’Sullivan, F. (1988). Fast computation of fully automated log-density and log-hazard estimators. SIAM J. Sci. Statist. Comput. 9 363-379. · Zbl 0688.65083 · doi:10.1137/0909024
[52] Oreglia, M. J. (1980). A study of the reactions \(\psi'\rightarrow\gamma\gamma\psi\). Ph.D. thesis, Stanford Univ.
[53] Panaretos, V. M. (2011). A statistician’s view on deconvolution and unfolding. In Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding (H. B. Prosper and L.Lyons, eds.) CERN-2011-006 229-239. CERN, Geneva.
[54] Pintore, A., Speckman, P. and Holmes, C. C. (2006). Spatially adaptive smoothing splines. Biometrika 93 113-125. · Zbl 1152.62331 · doi:10.1093/biomet/93.1.113
[55] Prosper, H. B. and Lyons, L., eds. (2011). Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding . CERN-2011-006. CERN, Geneva.
[56] Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning . MIT Press, Cambridge, MA. · Zbl 1177.68165
[57] Reiss, R.-D. (1993). A Course on Point Processes . Springer, New York. · Zbl 0771.60037
[58] Richardson, W. H. (1972). Bayesian-based iterative method of image restoration. J. Opt. Soc. Amer. A 62 55-59.
[59] Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods , 2nd ed. Springer, New York. · Zbl 1096.62003
[60] Ruppert, D. and Carroll, R. J. (2000). Spatially-adaptive penalties for spline fitting. Aust. N.Z. J. Stat. 42 205-223.
[61] Ruppert, D., Wand, M. P. and Carroll, R. J. (2003). Semiparametric Regression. Cambridge Series in Statistical and Probabilistic Mathematics 12 . Cambridge Univ. Press, Cambridge. · Zbl 1038.62042
[62] Saquib, S. S., Bouman, C. A. and Sauer, K. (1998). ML parameter estimation for Markov random fields with applications to Bayesian tomography. IEEE Trans. Image Process. 7 1029-1044.
[63] Schumaker, L. L. (2007). Spline Functions : Basic Theory , 3rd ed. Cambridge Univ. Press, Cambridge. · Zbl 1123.41008
[64] Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B. Stat. Methodol. 36 111-147. · Zbl 0308.62063
[65] Vardi, Y., Shepp, L. A. and Kaufman, L. (1985). A statistical model for positron emission tomography. J. Amer. Statist. Assoc. 80 8-37. · Zbl 0561.62094 · doi:10.2307/2288030
[66] Veklerov, E. and Llacer, J. (1987). Stopping rule for the MLE algorithm based on statistical hypothesis testing. IEEE Trans. Med. Imaging 6 313-319.
[67] Wahba, G. (1983). Bayesian “confidence intervals” for the cross-validated smoothing spline. J. R. Stat. Soc. Ser. B. Stat. Methodol. 45 133-150. · Zbl 0538.65006
[68] Wahba, G. (1990). Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics 59 . SIAM, Philadelphia, PA. · Zbl 0813.62001
[69] Wei, G. C. G. and Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms. J. Amer. Statist. Assoc. 85 699-704.
[70] Weir, I. S. (1997). Fully Bayesian reconstructions from single-photon emission computed tomography data. J. Amer. Statist. Assoc. 92 49-60. · Zbl 0889.62023 · doi:10.2307/2291449
[71] Wood, S. N. (2006). On confidence intervals for generalized additive models based on penalized regression splines. Aust. N.Z. J. Stat. 48 445-464. · Zbl 1110.62042 · doi:10.1111/j.1467-842X.2006.00450.x
[72] Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 73 3-36. · doi:10.1111/j.1467-9868.2010.00749.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.