Numerical study of a flow of viscoelastic fluid of Kelvin-Voigt having zero order in a magnetic field. (English) Zbl 1455.76208

Summary: The article developed algorithms for the numerical solution of the initial-boundary problem of the flow of an incompressible viscoelastic Kelvin-Voigt fluid in the Earth’s magnetic field. The theorem on an existence and uniqueness of this problem solution is proved using the theory of semilinear Sobolev type equations in the works written by T.G. Sukachev, S.A. Kondyukova. The original initial-boundary problem is transformed to the Cauchy problem for ordinary systems of nonlinear equations by sampling. Algorithms based on the explicit one-step schemes having Runge-Kutta type of seventh-order accuracy with a choice of integration step are used to find a numerical solution of the Cauchy problem. Evaluation of control of calculation accuracy at each time step is carried out by a scheme of the eighth order of accuracy. A time step is chosen according to the results of monitoring. Computational experiments show high computational efficiency of the developed algorithms for solving of the problem considered.


76W05 Magnetohydrodynamics and electrohydrodynamics
76A10 Viscoelastic fluids
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
Full Text: DOI


[1] [1] А.П. Осколков, ”Начально-краевые задачи для уравнений движения жидкостей Кельвина–Фойгта и Олдройта”, Труды МИАН СССР, 179 (1988), 126–164 · Zbl 0795.14016
[2] [2] R. Hide, Mathematical Problems in the Geophisical Sciences, v. 1, AMS, Providence R.I., 1971
[3] [3] T.G. Sukacheva, A.O. Kondyukov, ”The Phase Space of a Model of Magnetohydrodynamics”, Differential Equations, 51:4 (2015), 502–509 · Zbl 1320.35293
[4] [4] А.О. Кондюков, Т.Г. Сукачева, ”Об одной модели магнитогидродинамики ненулевого порядка”, Обозрение прикладной и промышленной математики, XVI Всероссийский Симпозиум по прикладной и промышленной математике (Челябинск, 21 – 27 июня 2015), т. 22, 2015, 75 [A.O. Kondyukov, T.G. Sukacheva, ”On a Model of Magnetohydrodynamics of Nonzero Order”, Obozrenie Prikladnoy i Promyshlennoy Matematiki, XVI Vserossijskij simpozium po prikladnoj i promyshlennoj matematike (Chelyabinsk, 2015, June 21 – 27), т. 22, 2015, 75] · Zbl 1351.11035
[5] [5] А.О. Кондюков, ”Квазистационарные полутраектории для обобщенной модели магнитогидродинамики”, Математика и информационные технологии в нефтегазовом комплексе, Тезисы международной конференции, посвященной дню рождения великого русского математика академика П.Л. Чебышева (Сургут, 16 – 20 мая 2016), Сургут, 2016, 47 [A.O. Kondyukov, ”Quasistationary Semitrajectory for Generalized Model of Magnetohydrodynamics”, Matematika i informacionnye tehnologii v neftegazovom komplekse – Mathematics and Information Technology in the Oil and Gas Industry, International Conference, Dedicated to the Birthday of the Great Russian Mathematician, Academician P.L. Chebysheva (Surgut, 2016, May 16 – 20), Surgut, 2016, 47] · Zbl 0342.02023
[6] [6] О.П. Матвеева, Т.Г. Сукачева, Математические модели вязкоупругих несжимаемых жидкостей ненулевого порядка, Изд. центр ЮУрГУ, Челябинск, 2014, 101 с. [O.P. Matveeva, T.G. Sukacheva, Mathematical Models of Viscoelastic Incompressible Fluids of Nonzero Order, Acad. SUSU center, Chelyabinsk, 2014, 101 с.] · Zbl 0342.02023
[7] [7] C. Fletcher, Computational Techniques for Fluid Dynamics, v. 2, Springer–Verlag, Berlin, Heidelberg, 1991 · Zbl 0717.76001
[8] [8] Е.А. Новиков, Разработка алгоритмов переменной структуры для решения жестких задач, дисс. ... канд. физ.-матем. наук, Красноярск, 2014 [E.A. Novikov, Algorithms of Variable Structure Development for the Solving of the Stiff Problems, PhD Work, Krasnoyarsk, 2014] · Zbl 0342.02023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.