Bigo, Louis; Andreatta, Moreno Filtration of pitch-class sets complexes. (English) Zbl 1456.00060 Montiel, Mariana (ed.) et al., Mathematics and computation in music. 7th international conference, MCM 2019, Madrid, Spain, June 18–21, 2019, Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 11502, 213-226 (2019). Summary: A pitch-class set complex is a multidimensional object that spatially represents a collection of pitch-class sets and the intersections between them. If we consider the pitch classes within short time slices a piece can be divided into, we can evaluate for how long some combinations of pitch-classes sound simultaneously and then filter the piece according to the most relevant ones. This filtration process is performed by considering the superlevel sets of the function that computes the cumulative duration of pitch-class sets during the piece. Experiments show that musical sequences in the same style can exhibit similar sub-complexes in the filtration of their pitch-class set complexes. Filtered pitch-class set complexes also provide original informations on the use of the tonality and on the notion of centricity within a piece.For the entire collection see [Zbl 1425.00082]. Cited in 2 Documents MSC: 00A65 Mathematics and music Keywords:pitch-class sets; harmonic similarity; simplicial complexes; pitch-class set complexes; filtration; persistent homology Software:HexaChord PDF BibTeX XML Cite \textit{L. Bigo} and \textit{M. Andreatta}, Lect. Notes Comput. Sci. 11502, 213--226 (2019; Zbl 1456.00060) Full Text: DOI HAL References: [1] Ahonen, T.E., Lemström, K., Linkola, S.: Compression-based similarity measures in symbolic, polyphonic music. In: ISMIR, pp. 91-96 (2011) [2] Bergomi, M.G., Baratè, A., Di Fabio, B.: Towards a topological fingerprint of music. In: Bac, A., Mari, J.-L. (eds.) CTIC 2016. LNCS, vol. 9667, pp. 88-100. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39441-1_9 · Zbl 1339.00005 [3] Bergomi, M.G.: Dynamical and topological tools for (modern) music analysis. Ph.D. thesis, Université Pierre et Marie Curie-Paris VI (2015) [4] Bigo, L., Andreatta, M.: Topological Structures in Computer-Aided Music Analysis. Computational Music Analysis, pp. 57-80. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25931-4_3 · Zbl 1375.00067 [5] Bigo, L., Andreatta, M., Giavitto, J.-L., Michel, O., Spicher, A.: Computation and visualization of musical structures in chord-based simplicial complexes. In: Yust, J., Wild, J., Burgoyne, J.A. (eds.) MCM 2013. LNCS (LNAI), vol. 7937, pp. 38-51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39357-0_3 · Zbl 1270.00025 [6] Catanzaro, M.J.: Generalized tonnetze. J. Math. Music 5(2), 117-139 (2011) · Zbl 1226.00017 [7] Cohn, R.: Neo-riemannian operations, parsimonious trichords, and their “tonnetz” representations. J. Music Theor. 41(1), 1-66 (1997) [8] De Haas, W.B., Wiering, F., Veltkamp, R.C.: A geometrical distance measure for determining the similarity of musical harmony. Int. J. Multimedia Inf. Retrieval 2(3), 189-202 (2013) [9] Edelsbrunner, H.: Geometry and Topology for Mesh Generation, vol. 7. Cambridge University Press, Cambridge (2001) · Zbl 0981.65028 [10] Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society (2010) · Zbl 1193.55001 [11] Forte, A.: The Structure of Atonal Music, vol. 304. Yale University Press, New Haven (1973) [12] Gollin, E.: Some aspects of three-dimensional “tonnetze”. J. Music Theor. 1, 195-206 (1998) [13] Lascabettes, P.: Homologie Persistante Appliquée à le reconnaissance de genres musicaux. Master’s thesis, École Normale Supérieure Paris-Saclay/Irma (2018) [14] Lee, K.: Automatic chord recognition from audio using enhanced pitch class profile. In: ICMC (2006) [15] Marsden, A.: Schenkerian analysis by computer: a proof of concept. J. New Music Res. 39(3), 269-289 (2010) [16] Martorell, A., Gómez, E.: Contextual set-class analysis. In: Meredith, D. (ed.) Computational Music Analysis, pp. 81-110. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25931-4_4 · Zbl 1375.00078 [17] Mazzola, G.: Geometrie der Töne: Elemente der Mathematischen Musiktheorie. Birkhäuser (1990) · Zbl 0729.00008 [18] Mazzola, G.: The topos of music: geometric logic of concepts, theory, and performance. Birkhäuser (2012) [19] Sapp, C.S.: Harmonic visualizations of tonal music. In: ICMC, vol. 1, pp. 419-422. Citeseer (2001) [20] Temperley, D., Marvin, E.W.: Pitch-class distribution and the identification of key. Music Percept.: Interdisc. J. 25(3), 193-212 (2008) [21] Tymoczko, D.: A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice. Oxford University Press, Oxford (2010) [22] Tymoczko, D.: The generalized tonnetz. J. Music Theor. 1, 1-52 (2012) [23] White, C.W., Quinn, I.: The yale-classical archives corpus. Empirical Musicology Rev. 11(1), 50-58 (2016) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.