×

Vacuum bosonic currents induced by a compactified cosmic string in dS background. (English) Zbl 1457.81078

Summary: In this paper, we study the vacuum bosonic currents in the geometry of a compactified cosmic string in the background of the de Sitter spacetime. The currents are induced by magnetic fluxes, one running along the cosmic string and another one enclosed by the compact dimension. To develop the analysis, we obtain the complete set of normalized bosonic wave functions obeying a quasiperiodicity condition. In this context, we calculate the azimuthal and axial current densities and we show that these quantities are explicitly decomposed into two contributions: one originating from the geometry of a straight uncompactified cosmic string and the other induced by the compactification. We also compare the results with the literature in the case of a massive fermionic field in the same geometry.

MSC:

81T20 Quantum field theory on curved space or space-time backgrounds
81T33 Dimensional compactification in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Birrell, N. D. and Davies, P. C. W., Quantum Fields in Curved Space (Cambridge University Press, Cambridge, UK, 1982). · Zbl 0476.53017
[2] Linde, A., Particle Physics and Inflationary Cosmology (Harwood Academic Publishers, Chur, Switzerland, 1990).
[3] Vilenkin, A. and Shellard, E. P. S., Cosmic Strings and Other Topological Defects, (Cambridge University Press, Cambridge, 1994). · Zbl 0978.83052
[4] Hindmarsh, M. and Kibble, T., Rep. Prog. Phys.58 (1995) 477.
[5] Hyde, J. M., Long, A. J. and Vachaspati, T., Phys. Rev. D89 (2014) 065031.
[6] Planck Collab. (P. Ade et al.), arXiv:1303.5085.
[7] Damour, T. and Vilenkin, A., Phys. Rev. Lett.85 (2000) 3761.
[8] Battacharjee, P. and Sigl, G., Phys. Rep.327 (2000) 109.
[9] Berezinski, V., Hnatyk, B. and Vilenkin, A., Phys. Rev. D64 (2001) 043004.
[10] Nielsen, H. B. and Olesen, P., Nucl. Phys. B61 (1973) 45.
[11] Garfinkle, D., Phys. Rev. D32 (1985) 1323.
[12] Linet, B., Phys. Lett. A124 (1987) 240.
[13] Linet, B., Phys. Rev. D35 (1987) 536.
[14] Allen, B. and Shellard, E. P. S., On the evolution of cosmic strings, in The Formation and Evolution of Cosmic Strings: Proc. Workshop Supported by the SERC, Cambridge, , 3-7 July 1989, eds. Gibbons, G. W., Hawking, S. W. and Vachaspati, T. (Cambridge University Press, Cambridge, 1990), pp. 421-448.
[15] Guimarães, M. and Linet, B., Class. Quantum Grav.10 (1993) 1665.
[16] Davies, P. C. W. and Sahni, V., Class. Quantum Grav.5 (1988) 1.
[17] Souradeep, T. and Sahni, V., Phys. Rev. D46 (1992) 1616.
[18] Frolov, V. P. and Serebryanyi, E., Phys. Rev. D35 (1987) 3779.
[19] Linet, B., J. Math. Phys.36 (1995) 3694. · Zbl 0844.58118
[20] Moreira Júnior, E. S., Nucl. Phys. B451 (1995) 365. · Zbl 0925.81124
[21] Bezerra, V. B. and Khusnutdinov, N. R., Class. Quantum Grav.23 (2006) 3449. · Zbl 1096.83065
[22] Dowker, J., Phys. Rev. D36 (1987) 3742.
[23] Guimarães, M. and Linet, B., Commun. Math. Phys.165 (1994) 297. · Zbl 0810.53087
[24] Spinelly, J. and Bezerra de Mello, E. R., Class. Quantum Grav.20 (2003) 873. · Zbl 1026.83056
[25] Spinelly, J. and Bezerra de Mello, E. R., Int. J. Mod. Phys. A17 (2002) 4375. · Zbl 1039.83051
[26] Spinelly, J. and Bezerra de Mello, E. R., Int. J. Mod. Phys. D13 (2004) 607.
[27] Spinelly, J. and Bezerra de Mello, E. R., Nucl. Phys. Proc. Suppl.127 (2004) 77.
[28] Spinelly, J. and Bezerra de Mello, E. R., J. High Energy Phys.0809 (2008) 005.
[29] Sriramkumar, L., Class. Quantum Grav.18 (2001) 1015. · Zbl 0976.83060
[30] Sitenko, Y. and Vlasii, N., Class. Quantum Grav.26 (2009).
[31] Bragança, E. A. F., Santana Mota, H. F. and Bezerra de Mello, E. R., Int. J. Mod. Phys. D24 (2015) 1550055. · Zbl 1325.83022
[32] Bezerra de Mello, E. R., Class. Quantum Grav.27 (2010) 095017. · Zbl 1190.83094
[33] Bezerra de Mello, E. R., Bezerra, V., Saharian, A. and Bardeghyan, V., Phys. Rev. D82 (2010) 085033.
[34] Bezerra de Mello, E. R., Bezerra, V. B., Saharian, A. A. and Harutyunyan, H. H., Phys. Rev. D91 (2015) 064034.
[35] Maior de Sousa, M. S., Ribeiro, R. F. and Bezerra de Mello, E. R., Phys. Rev. D93 (2016) 043545.
[36] Maior de Sousa, M. S., Ribeiro, R. F. and Bezerra de Mello, E. R., Phys. Rev. D95 (2017) 045005.
[37] Ottewill, A. C. and Taylor, P., Phys. Rev. D82 (2010) 104013.
[38] Ottewill, A. C. and Taylor, P., Class. Quantum Grav.28 (2011) 015007. · Zbl 1207.83036
[39] Bezerra de Mello, E. R. and Saharian, A. A., J. Phys. A, Math. Theor.45 (2012) 115402. · Zbl 1241.83067
[40] Bezerra de Mello, E. R. and Saharian, A. A., Class. Quantum Grav.30 (2013) 175001. · Zbl 1273.83080
[41] Bezerra de Mello, E. R. and Saharian, A. A., J. High Energy Phys.04 (2009) 046.
[42] Bezerra de Mello, E. R. and Saharian, A. A., J. High Energy Phys.08 (2010) 038. · Zbl 1291.81437
[43] Mohammadi, A., Bezerra de Mello, E. R. and Saharian, A. A., Class. Quantum Grav.32 (2015) 135002. · Zbl 1327.83247
[44] Bragança, E. A. F., Bezerra de Mello, E. R. and Mohammadi, A., Phys. Rev. D101 (2020) 045019.
[45] Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions (Dover, New York, 1972). · Zbl 0543.33001
[46] Bellucci, S., Saharian, A. and Bardeghyan, V., Phys. Rev. D82 (2010) 065011.
[47] Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products (Academic Press, 1980). · Zbl 0521.33001
[48] Bellucci, S., Bezerra de Mello, E. R. and Saharian, A. A., Phys. Rev. D89 (2014) 085002.
[49] Bezerra de Mello, E. R. and Saharian, A. A., Eur. Phys. J. C73 (2013) 2532.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.