×

Evolution of cooperation in social dilemmas with assortative interactions. (English) Zbl 1457.91075

Summary: Cooperation in social dilemmas plays a pivotal role in the formation of systems at all levels of complexity, from replicating molecules to multi-cellular organisms to human and animal societies. In spite of its ubiquity, the origin and stability of cooperation pose an evolutionary conundrum, since cooperation, though beneficial to others, is costly to the individual cooperator. Thus natural selection would be expected to favor selfish behavior in which individuals reap the benefits of cooperation without bearing the costs of cooperating themselves. Many proximate mechanisms have been proposed to account for the origin and maintenance of cooperation, including kin selection, direct reciprocity, indirect reciprocity, and evolution in structured populations. Despite the apparent diversity of these approaches they all share a unified underlying logic: namely, each mechanism results in assortative interactions in which individuals using the same strategy interact with a higher probability than they would at random. Here we study the evolution of cooperation in both discrete strategy and continuous strategy social dilemmas with assortative interactions. For the sake of tractability, assortativity is modeled by an individual interacting with another of the same type with probability \(r\) and interacting with a random individual in the population with probability \(1-r\), where \(r\) is a parameter that characterizes the degree of assortativity in the system. For discrete strategy social dilemmas we use both a generalization of replicator dynamics and individual-based simulations to elucidate the donation, snowdrift, and sculling games with assortative interactions, and determine the analogs of Hamilton’s rule, which govern the evolution of cooperation in these games. For continuous strategy social dilemmas we employ both a generalization of deterministic adaptive dynamics and individual-based simulations to study the donation, snowdrift, and tragedy of the commons games, and determine the effect of assortativity on the emergence and stability of cooperation.

MSC:

91A22 Evolutionary games
91A12 Cooperative games
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Eigen, M.; Schuster, P.; The hypercycle: A principle of natural self-organization; Naturwissenschaften: 1977; Volume 64 ,541-565.
[2] Maynard Smith, J.; Szathmary, E.; ; The Major Transitions in Evolution: Oxford, UK 1997; .
[3] Turner, P.; Chao, L.; Prisoner’s dilemma in an RNA virus; Nature: 1999; Volume 398 ,441.
[4] Wilkinson, G.; Food sharing in vampire bats; Sci. Am.: 1990; Volume 262 ,76-82.
[5] Milinski, M.; Tit for tat in sticklebacks and the evolution of cooperation; Nature: 1987; Volume 325 ,433-435.
[6] Mooring, M.; Hart, B.; Reciprocal allogrooming in wild impala lambs; Ethology: 1997; Volume 103 ,665-680.
[7] Seyfarth, R.; Cheney, D.; Marler, P.; Vervet monkey alarm calls: Semantic communication in a free-ranging primate; Anim. Behav.: 1980; Volume 28 ,1070-1094.
[8] Fehr, E.; Gächter, S.; Altruistic punishment in humans; Nature: 2002; Volume 415 ,137-140.
[9] Hardin, G.; The tragedy of the commons; Science: 1968; Volume 162 ,1243-1248.
[10] Ostrom, E.; ; Governing the Commons: The Evolution of Institutions for Collective Action: Cambridge, UK 1990; .
[11] Leyton-Brown, K.; Shoham, Y.; ; Essentials of Game Theory: A Concise, Multidisciplinary Introduction: San Rafael, CA, USA 2008; . · Zbl 1203.91002
[12] Adar, E.; Huberman, B.; Free Riding on Gnutella; First Monday: 2000; Volume 5 .
[13] Hamilton, W.; The genetical evolution of social behavior I; J. Theor. Biol.: 1964; Volume 7 ,1-16.
[14] Axelrod, R.; Hamilton, W.; The evolution of cooperation; Science: 1981; Volume 211 ,1390-1396. · Zbl 1225.92037
[15] Sugden, R.; ; The Economics of Rights, Cooperation and Welfare: Oxford, UK 1986; .
[16] Kollock, P.; Social dilemmas: The anatomy of cooperation; Annu. Rev. Sociol.: 1998; Volume 24 ,183-214.
[17] Nowak, M.; ; Evolutionary Dynamics: Exploring the Equations of Life: Cambridge, MA, USA 2006; . · Zbl 1115.92047
[18] Sigmund, K.; ; The Calculus of Selfishness: Princeton, NJ, USA 2010; . · Zbl 1189.91010
[19] Iyer, S.; Killingback, T.; Evolution of cooperation in social dilemmas on complex networks; PLoS Comput. Biol.: 2016; Volume 12 . · Zbl 1343.92561
[20] Maynard Smith, J.; Price, G.; The logic of animal conflict; Nature: 1973; Volume 246 ,15. · Zbl 1369.92134
[21] Maynard Smith, J.; ; Evolution and the Theory of Games: Cambridge, UK 1982; . · Zbl 0526.90102
[22] Taylor, P.; Jonker, L.; Evolutionary stable strategies and game dynamics; Math. Biosci.: 1978; Volume 40 ,145-156. · Zbl 0395.90118
[23] Hofbauer, J.; Sigmund, K.; ; Evolutionary Games and Population Dynamics: Cambridge, UK 1998; . · Zbl 0914.90287
[24] Metz, J.; Geritz, S.; Meszéna, G.; Jacobs, F.; Van Heerwaarden, J.; Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction; Stoch. Spat. Struct. Dyn. Syst.: 1996; Volume 45 ,183-231. · Zbl 0972.92024
[25] Geritz, S.; Meszéna, G.; Metz, J.; Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree; Evol. Ecol.: 1997; Volume 12 ,35-57.
[26] Doebeli, M.; Hauert, C.; Killingback, T.; The evolutionary origin of cooperators and defectors; Science: 2004; Volume 306 ,859-862.
[27] Killingback, T.; Doebeli, M.; Hauert, C.; Cooperation and defection in the tragedy of the commons; Biol. Theory: 2010; Volume 5 ,3-6.
[28] Kandori, M.; Mailath, G.; Rob, R.; Learning, mutation, and long run equilibria in games; Econom. J. Econom. Soc.: 1993; Volume 61 ,29-56. · Zbl 0776.90095
[29] Young, H.; The evolution of conventions; Econom. J. Econom. Soc.: 1993; Volume 61 ,57-84. · Zbl 0773.90101
[30] Kaniovski, Y.; Young, H.; Learning dynamics in games with stochastic perturbations; Games Econ. Behav.: 1995; Volume 11 ,330-363. · Zbl 0841.90124
[31] Nowak, M.; Sasaki, A.; Taylor, C.; Fudenberg, D.; Emergence of cooperation and evolutionary stability in finite populations; Nature: 2004; Volume 428 ,646-650.
[32] Manapat, M.; Rand, D.; Pawlowitsch, C.; Nowak, M.; Stochastic evolutionary dynamics resolve the Traveler’s Dilemma; J. Theor. Biol.: 2012; Volume 303 ,119-127. · Zbl 1337.91022
[33] Rand, D.; Nowak, M.; Evolutionary dynamics in finite populations can explain the full range of cooperative behaviors observed in the centipede game; J. Theor. Biol.: 2012; Volume 300 ,212-221. · Zbl 1397.91076
[34] Cornforth, D.M.; Sumpter, D.J.; Brown, S.P.; Brännström, Å.; Synergy and group size in microbial cooperation; Am. Nat.: 2012; Volume 180 ,296-305.
[35] Nowak, M.; Five rules for the evolution of cooperation; Science: 2006; Volume 314 ,1560-1563.
[36] Frank, S.; ; Foundations of Social Evolution: Princeton, NJ, USA 1998; .
[37] Nowak, M.; Sigmund, K.; Tit for tat in heterogeneous populations; Nature: 1992; Volume 355 ,250-253.
[38] Nowak, M.; Sigmund, K.; A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner’s Dilemma game; Nature: 1993; Volume 364 ,56-58.
[39] Axelrod, R.; ; The Evolution of Cooperation: New York, NY, USA 2006; . · Zbl 1117.92047
[40] Nowak, M.; Sigmund, K.; Evolution of indirect reciprocity by image scoring; Nature: 1998; Volume 393 ,573-577.
[41] Nowak, M.; Sigmund, K.; Evolution of indirect reciprocity; Nature: 2005; Volume 437 ,1291-1298.
[42] Nowak, M.; May, R.; Evolutionary games and spatial chaos; Nature: 1992; Volume 359 ,826-829.
[43] Lindgren, K.; Nordahl, M.; Evolutionary dynamics of spatial games; Phys. D Nonlinear Phenom.: 1994; Volume 75 ,292-309. · Zbl 0860.90139
[44] Nowak, M.; Bonhoeffer, S.; May, R.; Spatial games and the maintenance of cooperation; Proc. Natl. Acad. Sci. USA: 1994; Volume 91 ,4877-4881. · Zbl 0799.92010
[45] Killingback, T.; Doebeli, M.; Spatial evolutionary game theory: Hawks and Doves revisited; Proc. R. Soc. Lond. Ser. B Biol. Sci.: 1996; Volume 263 ,1135-1144.
[46] Nakamaru, M.; Matsuda, H.; Iwasa, Y.; The evolution of cooperation in a lattice-structured population; J. Theor. Biol.: 1997; Volume 184 ,65-81.
[47] Killingback, T.; Doebeli, M.; Self-organized criticality in spatial evolutionary game theory; J. Theor. Biol.: 1998; Volume 191 ,335-340.
[48] Szabó, G.; Tőke, C.; Evolutionary prisoner’s dilemma game on a square lattice; Phys. Rev. E: 1998; Volume 58 ,69.
[49] Van Baalen, M.; Rand, D.; The unit of selection in viscous populations and the evolution of altruism; J. Theor. Biol.: 1998; Volume 193 ,631-648.
[50] Killingback, T.; Doebeli, M.; Knowlton, N.; Variable investment, the continuous prisoner’s dilemma, and the origin of cooperation; Proc. R. Soc. Lond. Ser. B Biol. Sci.: 1999; Volume 266 ,1723-1728.
[51] Brauchli, K.; Killingback, T.; Doebeli, M.; Evolution of cooperation in spatially structured populations; J. Theor. Biol.: 1999; Volume 200 ,405-417.
[52] Szabó, G.; Antal, T.; Szabó, P.; Droz, M.; Spatial evolutionary prisoner’s dilemma game with three strategies and external constraints; Phys. Rev. E: 2000; Volume 62 ,1095.
[53] Ifti, M.; Killingback, T.; Doebeli, M.; Effects of neighbourhood size and connectivity on spatial Continuous Prisoner’s Dilemma; J. Theor. Biol.: 2004; Volume 231 ,97-106. · Zbl 1447.92284
[54] Hauert, C.; Doebeli, M.; Spatial structure often inhibits the evolution of cooperation in the snowdrift game; Nature: 2004; Volume 428 ,643-646.
[55] Santos, F.; Pacheco, J.; Scale-free networks provide a unifying framework for the emergence of cooperation; Phys. Rev. Lett.: 2005; Volume 95 ,98-104.
[56] Santos, F.; Pacheco, J.; Lenaerts, T.; Evolutionary dynamics of social dilemmas in structured heterogeneous populations; Proc. Natl. Acad. Sci. USA: 2006; Volume 103 ,3490-3494.
[57] Wang, W.; Ren, J.; Chen, G.; Wang, B.; Memory-based snowdrift game on networks; Phys. Rev. E: 2006; Volume 74 ,056113.
[58] Ohtsuki, H.; Hauert, C.; Lieberman, E.; Nowak, M.; A simple rule for the evolution of cooperation on graphs and social networks; Nature: 2006; Volume 441 ,502-505.
[59] Tang, C.; Wang, W.; Wu, X.; Wang, B.; Effects of average degree on cooperation in networked evolutionary game; Eur. Phys. J. B Condens. Matter Complex Syst.: 2006; Volume 53 ,411-415. · Zbl 1189.91029
[60] Szabo, G.; Fáth, G.; Evolutionary games on graphs; Phys. Rep.: 2007; Volume 446 ,97-216.
[61] Chen, Y.; Lin, H.; Wu, C.; Evolution of prisoner’s dilemma strategies on scale-free networks; Phys. A Stat. Mech. Its Appl.: 2007; Volume 385 ,379-384.
[62] Du, W.; Zheng, H.; Hu, M.; Evolutionary prisoner’s dilemma game on weighted scale-free networks; Phys. A Stat. Mech. Its Appl.: 2008; Volume 387 ,3796-3800.
[63] Gómez-Gardeñes, J.; Poncela, J.; Floría, L.; Moreno, Y.; Natural selection of cooperation and degree hierarchy in heterogeneous populations; J. Theor. Biol.: 2008; Volume 253 ,296-301. · Zbl 1398.92172
[64] Lee, K.; Chan, C.; Hui, P.; Zheng, D.; Cooperation in N-person evolutionary snowdrift game in scale-free Barabási-Albert networks; Phys. A Stat. Mech. Its Appl.: 2008; Volume 387 ,5602-5608.
[65] Szolnoki, A.; Perc, M.; Danku, Z.; Towards effective payoffs in the prisoner’s dilemma game on scale-free networks; Phys. A Stat. Mech. Its Appl.: 2008; Volume 387 ,2075-2082.
[66] Alonso-Sanz, R.; Memory versus spatial disorder in the support of cooperation; BioSystems: 2009; Volume 97 ,90-102.
[67] Floría, L.; Gracia-Lázaro, C.; Gómez-Gardenes, J.; Moreno, Y.; Social network reciprocity as a phase transition in evolutionary cooperation; Phys. Rev. E: 2009; Volume 79 ,026106.
[68] Li, X.; Wu, Y.; Rong, Z.; Zhang, Z.; Zhou, S.; The prisoner’s dilemma in structured scale-free networks; J. Phys. A Math. Theor.: 2009; Volume 42 ,245002. · Zbl 1165.91461
[69] Newth, D.; Cornforth, D.; Asynchronous spatial evolutionary games; BioSystems: 2009; Volume 95 ,120-129.
[70] Pacheco, J.; Santos, F.; Souza, M.; Skyrms, B.; Evolutionary dynamics of collective action in N-person stag hunt dilemmas; Proc. R. Soc. Lond. B Biol. Sci.: 2009; Volume 276 ,315-321.
[71] Perc, M.; Evolution of cooperation on scale-free networks subject to error and attack; New J. Phys.: 2009; Volume 11 ,033027.
[72] Roca, C.; Cuesta, J.; Sánchez, A.; Promotion of cooperation on networks? The myopic best response case; Eur. Phys. J. B: 2009; Volume 71 ,587-595.
[73] Yang, D.; Shuai, J.; Lin, H.; Wu, C.; Individual’s strategy characterized by local topology conditions in prisoner’s dilemma on scale-free networks; Phys. A Stat. Mech. Its Appl.: 2009; Volume 388 ,2750-2756.
[74] Débarre, F.; Hauert, C.; Doebeli, M.; Social evolution in structured populations; Nat. Commun.: 2014; Volume 5 ,3409.
[75] Allen, B.; Lippner, G.; Chen, Y.; Fotouhi, B.; Momeni, N.; Yau, S.; Nowak, M.; Evolutionary dynamics on any population structure; Nature: 2017; Volume 544 ,227.
[76] Traulsen, A.; Nowak, M.; Evolution of cooperation by multilevel selection; Proc. Natl. Acad. Sci. USA: 2006; Volume 103 ,10952-10955.
[77] Killingback, T.; Bieri, J.; Flatt, T.; Evolution in group-structured populations can resolve the tragedy of the commons; Proc. R. Soc. Lond. Ser. B Biol. Sci.: 2006; Volume 273 ,1477-1481.
[78] Hamilton, W.; Innate social aptitudes of man: An approach from evolutionary genetics; Biosoc. Anthropol.: 1975; Volume 53 ,133-155.
[79] Grafen, A.; The hawk-dove game played between relatives; Anim. Behav.: 1979; Volume 27 ,905-907.
[80] Grafen, A.; A geometric view of relatedness; Oxf. Surv. Evol. Biol.: 1985; Volume 2 ,28-89.
[81] Maynard Smith, J.; ; Evolutionary Genetics: Oxford, UK 1998; .
[82] Fletcher, J.; Doebeli, M.; A simple and general explanation for the evolution of altruism; Proc. R. Soc. Lond. B Biol. Sci.: 2009; Volume 276 ,13-19.
[83] Price, G.; Selection and covariance; Nature: 1970; Volume 227 ,520-521.
[84] Henrich, J.; Cultural group selection, coevolutionary processes and large-scale cooperation; J. Econ. Behav. Organ.: 2004; Volume 53 ,3-35.
[85] Russell, B.; ; Common Sense and Nuclear Warfare: New York, NY, USA 1959; .
[86] Young, H.; ; Individual Strategy and Social Structure: An Evolutionary Theory of Institutions: Princeton, NJ, USA 2001; .
[87] Skyrms, B.; Pemantle, R.; A dynamic model of social network formation; Proc. Natl. Acad. Sci. USA: 2000; Volume 97 ,9340-9346. · Zbl 0984.91013
[88] Skyrms, B.; ; The Stag Hunt and the Evolution of Social Structure: Cambridge, UK 2003; .
[89] Bergstrom, T.; On the evolution of altruistic ethical rules for siblings; Am. Econ. Rev.: 1995; Volume 85 ,58-81.
[90] Bergstrom, T.; The algebra of assortative encounters and the evolution of cooperation; Int. Game Theory Rev.: 2003; Volume 5 ,211-228. · Zbl 1051.91076
[91] Taylor, C.; Nowak, M.; Evolutionary game dynamics with non-uniform interaction rates; Theor. Popul. Biol.: 2006; Volume 69 ,243-252. · Zbl 1109.92037
[92] Van Veelen, M.; The replicator dynamics with n players and population structure; J. Theor. Biol.: 2011; Volume 276 ,78-85. · Zbl 1405.91046
[93] Alger, I.; Weibull, J.; Homo moralis—Preference evolution under incomplete information and assortative matching; Econometrica: 2013; Volume 81 ,2269-2302. · Zbl 1287.91041
[94] Bergstrom, T.; Measures of assortativity; Biol. Theory: 2013; Volume 8 ,133-141.
[95] Allen, B.; Nowak, M.; Games among relatives revisited; J. Theor. Biol.: 2015; Volume 378 ,103-116. · Zbl 1343.91004
[96] Cooney, D.; Allen, B.; Veller, C.; Assortment and the evolution of cooperation in a Moran process with exponential fitness; J. Theor. Biol.: 2016; Volume 409 ,38-46. · Zbl 1405.91035
[97] Nax, H.; Rigos, A.; Assortativity evolving from social dilemmas; J. Theor. Biol.: 2016; Volume 395 ,194-203. · Zbl 1343.91033
[98] Van Veelen, M.; Allen, B.; Hoffman, M.; Simon, B.; Veller, C.; Hamilton’s rule; J. Theor. Biol.: 2017; Volume 414 ,176-230. · Zbl 1369.92085
[99] Killingback, T.; Doebeli, M.; The continuous prisoner’s dilemma and the evolution of cooperation through reciprocal altruism with variable investment; Am. Nat.: 2002; Volume 160 ,421-438.
[100] Allen, B.; Nowak, M.; Dieckmann, U.; Adaptive dynamics with interaction structure; Am. Nat.: 2013; Volume 181 ,139-163.
[101] Coder Gylling, K.; Brännström, Å.; Effects of relatedness on the evolution of cooperation in nonlinear public goods games; Games: 2018; Volume 9 . · Zbl 1419.91090
[102] Zeeman, E.; Population dynamics from game theory; Glob. Theory Dyn. Syst.: 1980; Volume 819 ,471-497. · Zbl 0448.92015
[103] Meszéna, G.; Adaptive dynamics: The continuity argument; J. Evol. Biol.: 2005; Volume 18 ,1182-1185.
[104] McGill, B.; Brown, J.; Evolutionary game theory and adaptive dynamics of continuous traits; Annu. Rev. Ecol. Evol. Syst.: 2007; Volume 38 ,403-435.
[105] Brännström, A.; Johansson, J.; Von Festenberg, N.; The hitchhiker’s guide to adaptive dynamics; Games: 2013; Volume 4 ,304-328. · Zbl 1314.91030
[106] Dieckmann, U.; Law, R.; The dynamical theory of coevolution: A derivation from stochastic ecological processes; J. Math. Biol.: 1996; Volume 34 ,579-612. · Zbl 0845.92013
[107] Hamilton, W.; The evolution of altruistic behavior; Am. Nat.: 1963; Volume 97 ,354-356.
[108] Altmann, S.; Altruistic behaviour: The fallacy of kin deployment; Anim. Behav.: 1979; Volume 27 ,958-959.
[109] Weigel, R.; The distribution of altruism among kin: A mathematical model; Am. Nat.: 1981; Volume 118 ,191-201.
[110] Schulman, S.; Rubenstein, D.; Kinship, need, and the distribution of altruism; Am. Nat.: 1983; Volume 121 ,776-788.
[111] Sibly, R.; McFarland, D.; On the fitness of behavior sequences; Am. Nat.: 1976; Volume 110 ,601-617.
[112] Bonabeau, E.; Agent-based modeling: Methods and techniques for simulating human systems; Proc. Natl. Acad. Sci. USA: 2002; Volume 99 ,7280-7287.
[113] Iyer, S.; Killingback, T.; Evolutionary dynamics of a smoothed war of attrition game; J. Theor. Biol.: 2016; Volume 396 ,25-41. · Zbl 1343.92561
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.