×

On highly dimensional elastic and nonelastic interaction between internal waves in straight and varying cross-section channels. (English) Zbl 1459.74095

Summary: This manuscript studies the computational solutions of the highly dimensional elastic and nonelastic interaction between internal waves through the fractional nonlinear \((4 + 1)\)-dimensional Fokas equation. This equation is considered as the extension model of the two-dimensional Davey-Stewartson (DS) and Kadomtsev-Petviashvili (KP) equations to a four spatial dimensions equation with time domain. The modified Khater method is employed along the Atangana-Baleanu (AB) derivative operator to construct many novel explicit wave solutions. These solutions explain more physical and dynamical behavior of that kind of the interaction. Moreover, 2D, 3D, contour, and stream plots are demonstrated to explain the detailed dynamical characteristics of these solutions. The novelty of our paper is shown by comparing our results with those obtained in previous published research papers.

MSC:

74J20 Wave scattering in solid mechanics
34A08 Fractional ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wyatt, A. S. J.; Leichter, J. J.; Toth, L. T.; Miyajima, T.; Aronson, R. B.; Nagata, T., Heat accumulation on coral reefs mitigated by internal waves, Nature Geoscience, 13, 1, 28-34 (2020) · doi:10.1038/s41561-019-0486-4
[2] Chen, C.; Liu, W.; Bi, C., A two-grid characteristic finite volume element method for semilinear advection-dominated diffusion equations, Numerical Methods for Partial Differential Equations, 29, 5, 1543-1562 (2013) · Zbl 1274.65252 · doi:10.1002/num.21766
[3] Chen, C.; Zhao, X., A posteriori error estimate for finite volume element method of the parabolic equations, Numerical Methods for Partial Differential Equations, 33, 1, 259-275 (2017) · Zbl 1361.65066 · doi:10.1002/num.22085
[4] Reid, E. C.; DeCarlo, T. M.; Cohen, A. L., Internal waves influence the thermal and nutrient environment on a shallow coral reef, Limnology and Oceanography, 64, 5, 1949-1965 (2019) · doi:10.1002/lno.11162
[5] Chen, C.; Li, K.; Chen, Y.; Huang, Y., Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations, Advances in Computational Mathematics, 45, 2, 611-630 (2019) · Zbl 1415.65223 · doi:10.1007/s10444-018-9628-2
[6] Chen, C.; Liu, H.; Zheng, X.; Wang, H., A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile/immobile advection-diffusion equations, Computers & Mathematics with Applications, 79, 9, 2771-2783 (2020) · Zbl 1437.65180 · doi:10.1016/j.camwa.2019.12.008
[7] Zhang, X.; Wu, Y.; Caccetta, L., Nonlocal fractional order differential equations with changing-sign singular perturbation, Applied Mathematical Modelling, 39, 21, 6543-6552 (2015) · Zbl 1443.34014 · doi:10.1016/j.apm.2015.02.005
[8] Couston, L.-A.; Lecoanet, D.; Favier, B.; Le Bars, M., The energy flux spectrum of internal waves generated by turbulent convection, Journal of Fluid Mechanics, 854 (2018) · Zbl 1415.76308 · doi:10.1017/jfm.2018.669
[9] Zhang, X.; Liu, L.; Wu, Y., Multiple positive solutions of a singular fractional differential equation with negatively perturbed term, Mathematical and Computer Modelling, 55, 3-4, 1263-1274 (2012) · Zbl 1255.34010 · doi:10.1016/j.mcm.2011.10.006
[10] Zhang, X.; Liu, L.; Wu, Y.; Cui, Y., A sufficient and necessary condition of existence of blow-up radial solutions for a k-hessian equation with a nonlinear operator, Nonlinear Analysis: Modelling and Control, 25, 1, 126-143 (2020) · Zbl 1433.35108 · doi:10.15388/namc.2020.25.15736
[11] Zhang, X.; Xu, J.; Jiang, J.; Wu, Y.; Cui, Y., The convergence analysis and uniqueness of blow-up solutions for a Dirichlet problem of the general k-hessian equations, Applied Mathematics Letters, 102 (2020) · Zbl 1440.35018 · doi:10.1016/j.aml.2019.106124
[12] Qiu, B.; Nakano, T.; Chen, S.; Klein, P., Submesoscale transition from geostrophic flows to internal waves in the northwestern pacific upper ocean, Nature Communications, 8, 1, 1-10 (2017) · doi:10.1038/ncomms14055
[13] Zhang, X.; Jiang, J.; Wu, Y.; Cui, Y., The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach, Applied Mathematics Letters, 100 (2020) · Zbl 1430.35095 · doi:10.1016/j.aml.2019.106018
[14] Zhang, X.; Wu, Y.; Caccetta, L., Nonlocal fractional order differential equations with changing-sign singular perturbation, Applied Mathematical Modelling, 39, 21, 6543-6552 (2015) · Zbl 1443.34014 · doi:10.1016/j.apm.2015.02.005
[15] Zhang, X.; Liu, L.; Wu, Y., Multiple positive solutions of a singular fractional differential equation with negatively perturbed term, Mathematical and Computer Modelling, 55, 3-4, 1263-1274 (2012) · Zbl 1255.34010 · doi:10.1016/j.mcm.2011.10.006
[16] Couston, L.-A.; Lecoanet, D.; Favier, B.; Le Bars, M., Order out of chaos: slowly reversing mean flows emerge from turbulently generated internal waves, Physical Review Letters, 120, 24 (2018) · doi:10.1103/physrevlett.120.244505
[17] Chen, P.; Zhang, X.; Li, Y., Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators, Fractional Calculus and Applied Analysis, 23, 1, 268-291 (2020) · Zbl 1441.34006 · doi:10.1515/fca-2020-0011
[18] Barkan, R.; Winters, K. B.; McWilliams, J. C., Stimulated imbalance and the enhancement of eddy kinetic energy dissipation by internal waves, Journal of Physical Oceanography, 47, 1, 181-198 (2017) · doi:10.1175/jpo-d-16-0117.1
[19] Chen, P.; Zhang, X.; Li, Y., Approximate controllability of non-autonomous evolution system with nonlocal conditions, Journal of Dynamical and Control Systems, 26, 1, 1-16 (2020) · Zbl 1439.34065 · doi:10.1007/s10883-018-9423-x
[20] Kurkina, O.; Rouvinskaya, E.; Talipova, T.; Soomere, T., Propagation regimes and populations of internal waves in the Mediterranean Sea basin, Estuarine, Coastal and Shelf Science, 185, 44-54 (2017) · doi:10.1016/j.ecss.2016.12.003
[21] Bouffard, D.; Zdorovennov, R. E.; Zdorovennova, G. E.; Pasche, N.; Wüest, A.; Terzhevik, A. Y., Ice-covered lake Onega: effects of radiation on convection and internal waves, Hydrobiologia, 780, 1, 21-36 (2016) · doi:10.1007/s10750-016-2915-3
[22] Chen, P.; Zhang, X.; Zhang, X.; Li, Y., A blowup alternative result for fractional nonautonomous evolution equation of Volterra type, Communications on Pure & Applied Analysis, 17, 5, 1975-1992 (2018) · Zbl 1397.35331 · doi:10.3934/cpaa.2018094
[23] Kim, H.; Sakthivel, R.; Debbouche, A.; Torres, D. F. M., Traveling wave solutions of some important Wick-type fractional stochastic nonlinear partial differential equations, Chaos, Solitons & Fractals, 131, 109542 (2020) · Zbl 1495.35193 · doi:10.1016/j.chaos.2019.109542
[24] Seadawy, A. R.; Lu, D.; Khater, M. M. A., Bifurcations of traveling wave solutions for Dodd-Bullough-Mikhailov equation and coupled Higgs equation and their applications, Chinese Journal of Physics, 55, 4, 1310-1318 (2017) · Zbl 07814577 · doi:10.1016/j.cjph.2017.07.005
[25] Lu, D.; Seadawy, A. R.; Khater, M. M. A., Bifurcations of new multi soliton solutions of the van der waals normal form for fluidized granular matter via six different methods, Results in Physics, 7, 2028-2035 (2017) · doi:10.1016/j.rinp.2017.06.014
[26] Yang, C.; Rodriguez, N., A numerical perspective on traveling wave solutions in a system for rioting activity, Applied Mathematics and Computation, 364 (2020) · Zbl 1433.91006 · doi:10.1016/j.amc.2019.124646
[27] Khater, M. M.; Lu, D.; Zahran, E. H., Solitary wave solutions of the Benjamin-Bona-Mahoney-Burgers equation with dual power-law nonlinearity, Applied Mathematics & Information Sciences, 11, 5, 1-5 (2017) · Zbl 1527.35358 · doi:10.18576/amis/110511
[28] Arioli, G.; Koch, H., Traveling wave solutions for the FPU chain: a constructive approach, Nonlinearity, 33, 4, 1705-1722 (2020) · Zbl 1444.34077 · doi:10.1088/1361-6544/ab6a78
[29] Zhang, B.; Zhu, W.; Xia, Y.; Bai, Y., A unified analysis of exact traveling wave solutions for the fractional-order and integer-order Biswas-Milovic equation: via bifurcation theory of dynamical system, Qualitative Theory of Dynamical Systems, 19, 1, 11 (2020) · Zbl 1450.34008 · doi:10.1007/s12346-020-00352-x
[30] Lu, D.; Seadawy, A. R.; Khater, M. M. A., Dispersive optical soliton solutions of the generalized Radhakrishnan-Kundu-Lakshmanan dynamical equation with power law nonlinearity and its applications, Optik, 164, 54-64 (2018) · doi:10.1016/j.ijleo.2018.02.082
[31] Liu, J.-G.; Yang, X.-J.; Feng, Y.-Y., Characteristic of the algebraic traveling wave solutions for two extended (2 + 1)-dimensional Kadomtsev-Petviashvili equations, Modern Physics Letters A, 35, 7 (2020) · Zbl 1434.35162 · doi:10.1142/s0217732320500285
[32] Lu, D.; Seadawy, A. R.; Khater, M. M. A., Structures of exact and solitary optical solutions for the higher-order nonlinear Schrödinger equation and its applications in mono-mode optical fibers, Modern Physics Letters B, 33, 23 (2019) · doi:10.1142/s0217984919502798
[33] Seadawy, A. R.; Lu, D.; Khater, M. M. A., Bifurcations of solitary wave solutions for the three dimensional Zakharov-Kuznetsov-Burgers equation and Boussinesq equation with dual dispersion, Optik, 143, 104-114 (2017) · doi:10.1016/j.ijleo.2017.06.020
[34] Seadawy, A. R.; Lu, D.; Khater, M. M. A., Solitary wave solutions for the generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony nonlinear evolution equation, Journal of Ocean Engineering and Science, 2, 2, 137-142 (2017) · doi:10.1016/j.joes.2017.05.002
[35] Elbrolosy, M.; Elmandouh, A., Bifurcation and new traveling wave solutions for (2 + 1)-dimensional nonlinear Nizhnik-Novikov-Veselov dynamical equation, The European Physical Journal Plus, 135, 6, 533 (2020) · doi:10.1140/epjp/s13360-020-00546-x
[36] Zhu, W.; Xia, Y.; Bai, Y., Bifurcations and exact traveling wave solutions of Gerdjikov-Ivanov equation with perturbation terms, Advances in Differential Equations, 25, 5/6, 279-314 (2020) · Zbl 1458.34071
[37] Park, C.; Khater, M. M.; Attia, R. A.; Alharbi, W.; Alodhaibi, S. S., An explicit plethora of solution for the fractional nonlinear model of the low-pass electrical transmission lines via Atangana-Baleanu derivative operator, Alexandria Engineering Journal, 59, 3, 1205-1214 (2020)
[38] Yue, C.; Khater, M. M.; Attia, R. A.; Lu, D., The plethora of explicit solutions of the fractional KS equation through liquid-gas bubbles mix under the thermodynamic conditions via Atangana-Baleanu derivative operator, Advances in Difference Equations, 2020, 1, 1-12 (2020) · Zbl 1487.35426 · doi:10.1186/s13662-020-2540-3
[39] Khater, M. M.; Attia, R. A.; Lu, D., Computational and numerical simulations for the nonlinear fractional Kolmogorov-Petrovskii-Piskunov (FKPP) equation, Physica Scripta, 95, 5 (2020) · doi:10.1088/1402-4896/ab76f8
[40] Abdel-Aty, A.-H.; Khater, M. M. A.; Attia, R. A. M.; Abdel-Aty, M.; Eleuch, H., On the new explicit solutions of the fractional nonlinear space-time nuclear model, Fractals, 28, 8 (2020) · Zbl 1482.35063 · doi:10.1142/s0218348x20400356
[41] Zhang, W.-J.; Xia, T.-C., Solitary wave, M-lump and localized interaction solutions to the (4 + 1)-dimensional Fokas equation, Physica Scripta, 95, 4 (2020) · doi:10.1088/1402-4896/ab6a3f
[42] Yao, R.; Shen, Y.; Li, Z., Lump solutions and bilinear Bäcklund transformation for the (4 + 1)-dimensional Fokas equation, Mathematical Sciences, 59, 3, 1205-1214 (2020)
[43] Li, W.; Liu, Y., To construct lumps, breathers and interaction solutions of arbitrary higher-order for a (4 + 1)-dimensional Fokas equation, Modern Physics Letters B, 34, 21 (2020) · doi:10.1142/s0217984920502218
[44] Attia, R. A. M.; Lu, D.; Ak, T.; Khater, M. M. A., Optical wave solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term via modified Khater method, Modern Physics Letters B, 34, 5 (2020) · doi:10.1142/s021798492050044x
[45] Qin, H.; Attia, R. A.; Khater, M.; Lu, D., Ample soliton waves for the crystal lattice formation of the conformable time-fractional (N + 1) Sinh-Gordon equation by the modified Khater method and the Painlevé property, Journal of Intelligent & Fuzzy Systems, 38, 3, 2745-2752 (2020)
[46] Khater, M. M.; Park, C.; Abdel-Aty, A.-H.; Attia, R. A.; Lu, D., On new computational and numerical solutions of the modified Zakharov-Kuznetsov equation arising in electrical engineering, Alexandria Engineering Journal, 59, 3, 1099-1105 (2020)
[47] Yue, C.; Lu, D.; Khater, M. M.; Abdel-Aty, A.-H.; Alharbi, W.; Attia, R. A., On explicit wave solutions of the fractional nonlinear DSW system via the modified Khater method, Fractals (2020) · Zbl 1482.76026
[48] Ali, A. T.; Khater, M. M. A.; Attia, R. A. M.; Abdel-Aty, A.-H.; Lu, D., Abundant numerical and analytical solutions of the generalized formula of Hirota-Satsuma coupled KdV system, Chaos, Solitons & Fractals, 131 (2020) · Zbl 1495.35156 · doi:10.1016/j.chaos.2019.109473
[49] Khater, M. M.; Park, C.; Lu, D.; Attia, R. A., Analytical, semi-analytical, and numerical solutions for the Cahn-Allen equation, Advances in Difference Equations, 2020, 1, 1-12 (2020) · Zbl 1487.35409 · doi:10.1186/s13662-019-2475-8
[50] Khater, M. M. A.; Attia, R. A. M.; Lu, D., Explicit lump solitary wave of certain interesting (3 + 1)-dimensional waves in physics via some recent traveling wave methods, Entropy, 21, 4, 397 (2019) · doi:10.3390/e21040397
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.