×

Exponential Rosenthal and Marcinkiewicz-Zygmund inequalities. (English) Zbl 1463.60066

Ufim. Mat. Zh. 12, No. 3, 99-108 (2020) and Ufa Math. J. 12, No. 3, 97-106 (2020).
Summary: We extend the Rosenthal inequalities and the Marcinkiewicz-Zygmund inequalities to some exponential Orlicz spaces. The Rosenthal inequalities and the Marcinkiewicz-Zygmund inequalities are fundamental estimates on the moment of random variables on Lebesgue spaces. The proofs of the Rosenthal inequalities and the Marcinkiewicz-Zygmund inequalities on the exponential Orlicz spaces rely on two results from theory of function spaces and probability theory. The first one is an extrapolation property of the exponential Orlicz spaces. This property guarantees that the norms of some exponential Orlicz spaces can be obtained by taking the supremum over the weighted norms of Lebesgue spaces. The second one is the sharp estimates for the constants involved in the Rosenthal inequalities and the Marcinkiewicz-Zygmund inequalities on Lebesgue spaces. Our results are applications of the extrapolation property of the exponential Orlicz spaces and the sharp estimates for the constants involved in the Rosenthal inequalities and the Marcinkiewicz-Zygmund inequalities on Lebesgue spaces. In addition, the sharp estimates for the constants involved in the Rosenthal inequalities and the Marcinkiewicz-Zygmund inequalities on Lebesgue spaces provide not only some sharpened inequalities in probability, but also yield some substantial contributions on extending those probability inequalities to the exponential Orlicz spaces.

MSC:

60G42 Martingales with discrete parameter
60G46 Martingales and classical analysis
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
PDFBibTeX XMLCite
Full Text: DOI MNR

References:

[1] S. Astashkin, F. Sukochev, “Best constants in Rosenthal-type inequalities and the Kruglov operator”, Ann. Probab., 38:5 (2010), 1986-2008 · Zbl 1211.46008 · doi:10.1214/10-AOP529
[2] S. Astashkin, F. Sukochev, “Symmetric quasi-norms of sums of independent random variables in symmetric function spaces with the Kruglov property”, Israel J. Math., 184 (2011), 455-476 · Zbl 1253.60058 · doi:10.1007/s11856-011-0076-7
[3] M. Braverman, “Exponential Orlicz spaces and indepedent random variables”, Prob. Math. Stat., 12:2 (1991), 245-251 · Zbl 0774.60003
[4] M. Braverman, Independent Random Variables and Rearrangement Invariant Spaces, Cambridge University Press, Cambridge, 1994 · Zbl 0817.46031
[5] D. Burkholder, “Sharp inequalities for martingale and stochastic integral”, Asterisque, 157-158, 1988, 75-94 · Zbl 0656.60055
[6] S. Dharmadhikari, V. Fabian, K. Jogdeo, “Bounds on the moments of martingales”, Ann. Math. Stat., 39:5 (1968), 1719-1723 · Zbl 0196.19202 · doi:10.1214/aoms/1177698154
[7] D. E. Edmunds, P. Gurka, B. Opic, “Norms of embeddings of logarithmic Bessel potential spaces”, Proc. Amer. Math. Soc., 126:8 (1998), 2417-2425 · Zbl 0895.46020 · doi:10.1090/S0002-9939-98-04327-5
[8] D. E. Edmunds, W. D. Evans, Hardy Operators, function spaces, embeddings, Springer, Berlin, 2004 · Zbl 1099.46002
[9] J. Garnett, Bounded analytic functions, Academic Press, New York, 2006 · Zbl 1106.30001
[10] M. Fan, “Some inequalities for \(p\)-variations of martinagle”, Stochastic Process. Appl., 109:2 (2004), 189-201 · Zbl 1075.60039 · doi:10.1016/j.spa.2003.09.010
[11] P. Hitczenko, “Best constants in martingale version of Rosenthal”s inequality”, Ann. Probab., 18:4 (1990), 1656-1668 · Zbl 0725.60018 · doi:10.1214/aop/1176990639
[12] P. Hitczenko, “On the behavior of the constant in a decoupling inequality for martingales”, Proc. Amer. Math. Soc., 121:1 (1994), 253-258 · Zbl 0797.60038 · doi:10.1090/S0002-9939-1994-1176481-2
[13] Kwok-Pun Ho, “Exponential probabilistic inequalities”, Lith. Math. J., 58 (2018), 399-407 · Zbl 1407.60053 · doi:10.1007/s10986-018-9410-7
[14] Kwok-Pun Ho, “Exponential integrability of martingales”, Quaest. Math., 42:2 (2019), 201-206 · Zbl 1411.60061 · doi:10.2989/16073606.2018.1443169
[15] J. Hoffmann-Jørgensen, “Sums of independent Banach space valued random variables”, Studia Math., 52 (1974), 159-186 · Zbl 0265.60005 · doi:10.4064/sm-52-2-159-186
[16] W. Johnson, G. Schechtman, J. Zinn, “Best constants in moment inequalities for linear combinations of independent and exchangeable random variables”, Ann. Probab., 13:1 (1985), 234-253 · Zbl 0564.60020 · doi:10.1214/aop/1176993078
[17] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer, Berlin, 1991 · Zbl 0748.60004
[18] I. Pinelis, “On the distribution of sums of independent random variables with values in a Banach space”, Theory Probab. Appl., 23:3 (1978), 608-615 · Zbl 0422.60010 · doi:10.1137/1123070
[19] I. Pinelis, “Optimum bounds for the distributions of martingales in Banach spaces”, Ann. Probab., 22:4 (1994), 1679-1706 · Zbl 0836.60015 · doi:10.1214/aop/1176988477
[20] Y. Ren, H. Liang, “On the best constant in Marcinkiewicz-Zygmund inequality”, Stat. Probab. Lett., 53:3 (2001), 227-233 · Zbl 0991.60011 · doi:10.1016/S0167-7152(01)00015-3
[21] H. P. Rosenthal, “On subspaces of \(L_p (p>2)\) spanned sequences of independent random variables”, Israel J. Math., 8 (1970), 273-303 · Zbl 0213.19303 · doi:10.1007/BF02771562
[22] M. Talagrand, “Isoperimetry and integrability of the sum of independent Banach-space valued random variables”, Ann. Probab., 17:4 (1989), 1546-1570 · Zbl 0692.60016 · doi:10.1214/aop/1176991174
[23] H. Triebel, “Approximation numbers and entropy numbers of embeddings of fractional Besov-Sobolev spaces in Orlicz spaces”, Proc. London Math. Soc., 66:3 (1993), 589-618 · Zbl 0792.46024 · doi:10.1112/plms/s3-66.3.589
[24] G. Wang, “Sharp inequalities for the conditional square function of a martingale”, Ann. Probab., 19 (1991), 1679-1688 · Zbl 0744.60046 · doi:10.1214/aop/1176990229
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.