×

Unique solvability of a boundary value problem for a loaded fractional parabolic-hyperbolic equation with nonlinear terms. (English) Zbl 1466.35269

Summary: This work is devoted to study the existence and uniqueness of solution of an analogue of the Gellerstedt problem with nonlocal assumptions on the boundary and integral gluing conditions for the parabolic-hyperbolic type equation with nonlinear terms and Gerasimov-Caputo operator of differentiation. Using the method of integral energy, the uniqueness of solution have been proved. Existence of solution was proved by the method of successive approximations of factorial law for Volterra type nonlinear integral equations.

MSC:

35M10 PDEs of mixed type
35R11 Fractional partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Hussain, D. Baleanu, and M. Adeel, ‘‘Existence of solution and stability for the fractional order novel coronavirus (nCoV-2019) model,’’ Adv. Differ. Equat. 384 (2020). · Zbl 1485.92132
[2] C. Xu, Y. Yu, Y. Q. Chen, and Z. Lu, ‘‘Forecast analysis of the epidemic trend of COVID-19 in the United States by a generalized fractional-order SEIR model,’’ arXiv: 2004.12541v1 (2020).
[3] Tenreiro Machado, J. A., Handbook of Fractional Calculus with Applications (2019), Berlin, Boston: Walter de Gruyter, Berlin, Boston · Zbl 1522.26007
[4] I. Area, H. Batarfi, J. Losada, J. J. Nieto, W. Shammakh, and A. Torres, ‘‘On a fractional order Ebola epidemic model,’’ Adv. Differ. Equat. 278 (2015). · Zbl 1344.92150
[5] Ullah, S.; Khan, M. A.; Farooq, M.; Hammouch, Z.; Baleanu, D., “A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative,” Discret. Contin. Dyn. Syst, Ser. S, 13, 975-993 (2020) · Zbl 1439.92182
[6] Novozhenova, O. G., Life and science of Alexey Gerasimov, one of the pioneers of fractional calculus in Soviet Union, Fract. Calc. Appl. Anal., 20, 790-809 (2017) · Zbl 1473.26003 · doi:10.1515/fca-2017-0040
[7] Gerasimov, A. N., Generalization of laws of the linear deformation and their application to problems of the internal friction, Prikl. Mat. Mekh., 12, 251-260 (1948) · Zbl 0032.12901
[8] D. Kumar and D. Baleanu, ‘‘Fractional calculus and its applications in physics,’’ Front. Phys. 7 (6) (2019).
[9] Kim, Myong-Ha; Ri, Guk-Chol; Hyong-Chol, O., Operational method for solving multi-term fractional differential equations with the generalized fractional derivatives, Fract. Calc. Appl. Anal., 17, 79-95 (2014) · Zbl 1312.34018 · doi:10.2478/s13540-014-0156-6
[10] S. Patnaik, J. P. Hollkamp, and F. Semperlotti, ‘‘Applications of variable-order fractional operators: A review,’’ Proc. R. Soc. London, Ser. A 476, 20190498 (2020). · Zbl 1439.26028
[11] Y. A. Rossikhin, ‘‘Reflections on two parallel ways in the progress of fractional calculus in mechanics of solids,’’ Appl. Mech. Rev. 63, 010701 (2010).
[12] R. K. Saxena, R. Garra, and E. Orsingher, ‘‘Analytical solution of space-time fractional telegraph-type equations involving Hilfer and Hadamard derivatives,’’ Integr. Transforms Spec. Funct. 6 (2015). · Zbl 1337.26015
[13] Sun, H.; Chang, A.; Zhang, Y.; Chen, W., A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications, Fract. Calc. Appl. Anal., 22, 27-59 (2019) · Zbl 1428.34001 · doi:10.1515/fca-2019-0003
[14] Hilfer, R., Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys., 284, 399-408 (2002) · doi:10.1016/S0301-0104(02)00670-5
[15] Hilfer, R., On fractional relaxation, Fractals, 11, 251-257 (2003) · Zbl 1140.82315 · doi:10.1142/S0218348X03001914
[16] B. J. Kadirkulov, ‘‘Boundary problems for mixed parabolic-hyperbolic equations with two lines of changing type and fractional derivative,’’ Electron. J. Differ. Equat. 2014, 57-1-7 (2014). · Zbl 1288.35360
[17] Kilbas, A. A.; Repin, O. A., An analog of the Tricomi problem for a mixed type equation with a partial fractional derivative, Fract. Calc. Appl. Anal., 13, 69-84 (2010) · Zbl 1201.35148
[18] Pskhu, A. V., Fundamental solution of the fractional-order diffusion-wave equation, Izv.: Math., 73, 351-392 (2009) · Zbl 1172.26001 · doi:10.1070/IM2009v073n02ABEH002450
[19] T. K. Yuldashev and B. J. Kadirkulov, ‘‘Boundary value problem for weak nonlinear partial differential equations of mixed type with fractional Hilfer operator,’’ Axioms 9 (2), 68-1-19 (2020).
[20] Yuldashev, T. K.; Kadirkulov, B. J., Nonlocal problem for a mixed type fourth-order differential equation with Hilfer fractional operator, Ural Math. J., 6, 153-167 (2020) · Zbl 1448.35341 · doi:10.15826/umj.2020.1.013
[21] T. K. Yuldashev and E. T. Karimov, ‘‘Inverse problem for a mixed type integro-differential equation with fractional order Caputo operators and spectral parameters,’’ Axioms 9 (4), 121-1-24 (2020).
[22] Berdyshev, A. S.; Cabada, A.; Karimov, E. T., On a non-local boundary problem for a parabolic-hyperbolic equation involving a Riemann-Liouville fractional differential operator, Nonlin. Anal. Theory Methods Appl., 75, 3268-3273 (2012) · Zbl 1242.35180 · doi:10.1016/j.na.2011.12.033
[23] M. S. Salakhitdinov and E. T. Karimov, ‘‘On a nonlocal problem with gluing condition of integral form for parabolic-hyperbolic equation with Caputo operator,’’ Rep. Acad. Sci. Uzbekistan, No. 4, 6-9 (2014).
[24] O. Kh. Abdullaev, ‘‘Analog of the Gellerstedt problem for the mixed type equation with integral-differential operators of fractional order,’’ Uzbek Math. J., No. 3, 4-18 (2019). · Zbl 1488.35369
[25] Abdullaev, O. Kh., About a problem for the degenerate mixed type equation involving Caputo and Erdelyi-Kober operators fractional order, Ukr. Math. J., 71, 723-738 (2019) · Zbl 1436.93064 · doi:10.1007/s11253-019-01682-z
[26] K. Sadarangani and O. Kh. Abdullaev, ‘‘A non-local problem with discontinuous matching condition for loaded mixed type equation involving the Caputo fractional derivative,’’ Adv. Differ. Equat. 16-00217R3, 1-11 (2006).
[27] Nakhushev, A. M., Fractional Calculus and Their Applications (2003), Moscow: Fizmatlit, Moscow · Zbl 1066.26005
[28] Nakhushev, A. M., Loaded Equations and Their Applications (2012), Moscow: Nauka, Moscow · Zbl 0536.35080
[29] Abdullaev, O. Kh., “Non-local problem for the loaded mixed type equations with integral operator,” Vest. Samar. Tekh. Univ., Fiz.-, Mat. Nauki, 20, 220-240 (2016) · Zbl 1413.35320
[30] E. P. Melisheva, ‘‘The Dirichlet problem for the loaded Lavrent’ev-Bitsadze equation,’’ Vestn. Samar. Univ., Estestv.-Nauch. Ser., No. 6 (80), 39-47 (2010).
[31] Ramazanov, M. I.; Kosmakova, M. T.; Kasymova, L. Zh., On a problem of heat equation with fractional load, Lobachevskii J. Math., 41, 1873-1885 (2020) · Zbl 1452.35245 · doi:10.1134/S199508022009022X
[32] K. B. Sabitov, ‘‘Initial-boundary problem for parabolic-hyperbolic equation with loaded summands,’’ Russ. Math. (Iz. VUZ) 59, 23-33 (2015). · Zbl 1320.35244
[33] Yuldashev, T. K.; Islomov, B. I.; Alikulov, E. K., Boundary-value problems for loaded third-order parabolic-hyperbolic equations in infinite three-dimensional domains, Lobachevskii J. Math., 41, 926-944 (2020) · Zbl 1450.35187 · doi:10.1134/S1995080220050145
[34] Pskhu, A. V., Fractional Order Partial Equations (2005), Moscow: Nauka, Moscow · Zbl 1193.35245
[35] Mitidieri, E.; Pokhozhaev, S. I., A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 234, 1-362 (2001) · Zbl 0987.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.