×

Speed-up credit exposure calculations for pricing and risk management. (English) Zbl 1466.91337

Summary: We introduce a new method to calculate the credit exposure of European and path-dependent options. The proposed method is able to calculate accurate expected exposure and potential future exposure profiles under the risk-neutral and the real-world measure. A key advantage is that it delivers an accuracy comparable to a full re-evaluation and at the same time it is faster than a regression-based method. The core of the approach is solving a dynamic programming problem by function approximation. This yields a closed-form approximation along the paths together with the option’s delta and gamma. The simple structure allows for highly efficient evaluation of the exposures, even for a large number of simulated paths. The approach is flexible in the model choice, payoff profiles and asset classes. We validate the accuracy of the method numerically for three different equity products and a Bermudan interest rate swaption. Benchmarking against the popular least-squares Monte Carlo approach shows that our method is able to deliver a higher accuracy in a faster runtime.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
91G40 Credit risk

Software:

BENCHOP
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Black, F. and Scholes, M. , The pricing of options and other liabilities. J. Pol. Econ. , 1973, 81 , 637-654. · Zbl 1092.91524 · doi:10.1086/260062
[2] Brigo, D. and Mercurio, F. , Interest Rate Models-theory and Practice: with Smile Inflation and Credit , 2007 (Springer Science & Business Media). · Zbl 1109.91023
[3] Fang, F. and Oosterlee, C.W. , Pricing early-exercise and discrete barrier options by Fourier-Cosine series expansions. Num. Math. , 2009, 114 (1), 27. · Zbl 1185.91176 · doi:10.1007/s00211-009-0252-4
[4] Feng, Q. , Jain, S. , Karlsson, P. , Kandhai, D. and Oosterlee, C.W. , Efficient computation of exposure profiles on real-world and risk-neutral scenarios for bermudan swaptions. J. Comput. Finance , 2016, 20 (1), 139-172. · doi:10.21314/JCF.2017.337
[5] Gaß, M. , Glau, K. , Mahlstedt, M. and Mair, M. , Chebyshev interpolation for parametric option pricing. Finance Stoch. , 2018, 22 (3), 701-731. · Zbl 1402.91782 · doi:10.1007/s00780-018-0361-y
[6] Glau, K. , Mahlstedt, M. and Pötz, C. , A new approach for American option pricing: the dynamic Chebyshev method. SIAM. J. Sci. Comput. , 2019, 41 (1), B153-B180. · Zbl 1419.91648 · doi:10.1137/18M1193001
[7] Green, A. , XVA: Credit, Funding and Capital Valuation Adjustments , 2015 (John Wiley & Sons). · doi:10.1002/9781119161233
[8] Gregory, J. , Counterparty Credit Risk: The New Challenge for Global Financial Markets , 2010 (John Wiley & Sons). Vol. 470.
[9] Jain, S. and Oosterlee, C.W. , The stochastic grid bundling method: efficient pricing of bermudan options and their greeks. Appl. Math. Comput. , 2015, 269 , 412-431. · Zbl 1410.91486 · doi:10.1016/j.amc.2015.07.085
[10] Karlsson, P. , Jain, S. and Oosterlee, C.W. , Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Appl. Math. Finance , 2016, 23 (3), 175-196. · Zbl 1396.91741
[11] Longstaff, F.A. and Schwartz, E.S. , Valuing American options by simulation: A simple least-squares approach. Rev. Financ. Stud. , 2001, 14 (1), 113-147. · Zbl 1386.91144 · doi:10.1093/rfs/14.1.113
[12] Merton, R.C. , Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. , 1976, 3 (1-2), 125-144. · Zbl 1131.91344 · doi:10.1016/0304-405X(76)90022-2
[13] Sauter, S. and Schwab, C. , Boundary Element Methods, Translated and expanded from the 2004 German original, Volume 39. Springer Series Computational Mathematics, 2010.
[14] Schöftner, R. , On the estimation of credit exposures using regression-based Monte Carlo simulation. J. Credit Risk , 2008, 4 (4), 37-62. · doi:10.21314/JCR.2008.081
[15] Shen, Y. , Der Weide, J.A.Van and Anderluh, J.H. , A benchmark approach of counterparty credit exposure of Bermudan option under Lévy process: the Monte Carlo-cos method. Procedia. Comput. Sci. , 2013, 18 , 1163-1171. · doi:10.1016/j.procs.2013.05.282
[16] Stein, H.J. , Fixing risk neutral risk measures. Int. J. Theoretical Appl. Finance , 2016, 19 (03), 1650021. · Zbl 1403.91365 · doi:10.1142/S0219024916500217
[17] Trefethen, L.N. , Approximation Theory and Approximation Practice , 2013 (SIAM books). · Zbl 1264.41001
[18] von Sydow, L. , Höök, L.Josef , Larsson, E. , Lindström, E. , Milovanović, S. , Persson, J. , Shcherbakov, V. , Shpolyanskiy, Y. , Sirén, S. and Toivanen, J. , et al. , Benchop-the benchmarking project in option pricing. Int. J. Comput. Math. , 2015, 92 (12), 2361-2379. · Zbl 1335.91113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.