×

Solution concepts, well-posedness, and wave breaking for the Fornberg-Whitham equation. (English) Zbl 1467.35002

Summary: We discuss concepts and review results about the Cauchy problem for the Fornberg-Whitham equation, which has also been called Burgers-Poisson equation in the literature. Our focus is on a comparison of various strong and weak solution concepts as well as on blow-up of strong solutions in the form of wave breaking. Along the way we add aspects regarding semiboundedness at blow-up, from semigroups of nonlinear operators to the Cauchy problem, and about continuous traveling waves as weak solutions.

MSC:

35-02 Research exposition (monographs, survey articles) pertaining to partial differential equations
35L65 Hyperbolic conservation laws
35B44 Blow-up in context of PDEs
35C07 Traveling wave solutions
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Adams, RA; Fournier, JJF, Sobolev Spaces. Pure and Applied Mathematics (Amsterdam) (2003), Amsterdam: Elsevier/Academic Press, Amsterdam
[2] Amann, H., Ordinary Differential Equations. De Gruyter Studies in Mathematics (1990), Berlin: Walter de Gruyter & Co., Berlin · Zbl 0708.34002 · doi:10.1515/9783110853698
[3] Barbu, V., Nonlinear semigroups and differential equations in Banach spaces. Editura Academiei Republicii Socialiste Romania (1976), Leiden: Bucharest; Noordhoff International Publishing, Leiden · Zbl 0328.47035 · doi:10.1007/978-94-010-1537-0
[4] Barbu, V., Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics (2010), New York: Springer, New York · Zbl 1197.35002 · doi:10.1007/978-1-4419-5542-5
[5] Chen, A.; Li, J.; Huang, W., Single peak solitary wave solutions for the Fornberg-Whitham equation, Appl. Anal., 91, 3, 587-600 (2012) · Zbl 1238.35116 · doi:10.1080/00036811.2010.550577
[6] Constantin, A.: Nonlinear water waves with applications to wave-current interactions and tsunamis. In: CBMSNSF Regional Conference Series in Applied Mathematics, vol. 81. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011) · Zbl 1266.76002
[7] Constantin, A.; Escher, J., Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181, 2, 229-243 (1998) · Zbl 0923.76025 · doi:10.1007/BF02392586
[8] Constantin, A., Escher, J., Johnson, R.S., Villari, G.: Nonlinear water waves. Lecture Notes in Mathematics, vol. 2158. Springer, Cham; Fondazione C.I.M.E., Florence, 2016. Lectures from the summer school held in Cetraro, June 24-28, 2013, Edited by Constantin · Zbl 1354.00089
[9] Dafermos, CM, Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (2016), Berlin: Springer-Verlag, Berlin · Zbl 1364.35003
[10] Dautray, R.; Lions, J-L, Mathematical Analysis and Numerical Methods for Science and Technology (1988), Berlin: Springer-Verlag, Berlin · Zbl 0664.47001 · doi:10.1007/978-3-642-61566-5
[11] Fellner, K.; Schmeiser, C., Burgers-Poisson: a nonlinear dispersive model equation, SIAM J. Appl. Math., 64, 5, 1509-1525 (2004) · Zbl 1053.35092 · doi:10.1137/S0036139902410345
[12] Folland, GB, Real Analysis: Modern Techniques and Their Applications (1999), New York: Wiley, New York · Zbl 0924.28001
[13] Fornberg, B.; Whitham, GB, A numerical and theoretical study of certain nonlinear wave phenomena, Philos. Trans. R. Soc. Lond. Ser. A, 289, 1361, 373-404 (1978) · Zbl 0384.65049 · doi:10.1098/rsta.1978.0064
[14] Gao, X.; Lai, S.; Chen, H., The stability of solutions for the Fornberg-Whitham equation in L1(R) space, Bound. Value Probl., 142-154, 2018 (2018) · Zbl 1499.35189
[15] Grunert, K.; Nguyen, KT, On the Burgers-Poisson equation, J. Differ. Equ., 261, 6, 3220-3246 (2016) · Zbl 1347.35139 · doi:10.1016/j.jde.2016.05.028
[16] Haziot, SV, Wave breaking for the Fornberg-Whitham equation, J. Differ. Equ., 263, 12, 8178-8185 (2017) · Zbl 1375.35375 · doi:10.1016/j.jde.2017.08.037
[17] Holmes, J., Well-posedness of the Fornberg-Whitham equation on the circle, J. Differ. Equ., 260, 12, 8530-8549 (2016) · Zbl 1339.35268 · doi:10.1016/j.jde.2016.02.030
[18] Holmes, J.; Thompson, RC, Well-posedness and continuity properties of the Fornberg-Whitham equation in Besov spaces, J. Differ. Equ., 263, 7, 4355-4381 (2017) · Zbl 1372.35076 · doi:10.1016/j.jde.2017.05.019
[19] Hörmander, L., Notions of Convexity. Progress in Mathematics (1994), Boston, MA: Birkhäuser Boston Inc., Boston, MA · Zbl 0835.32001
[20] Hörmann, G., Discontinuous traveling waves as weak solutions to the Fornberg-Whitham equation, J. Differ. Equ., 265, 7, 2825-2841 (2018) · Zbl 1394.35099 · doi:10.1016/j.jde.2018.04.056
[21] Hörmann, G., Wave breaking of periodic solutions to the Fornberg-Whitham equation, Discrete Contin. Dyn. Syst., 38, 3, 1605-1613 (2018) · Zbl 1397.35254 · doi:10.3934/dcds.2018066
[22] Hörmann, G.; Okamoto, H., Weak periodic solutions and numerical case studies of the Fornberg-Whitham equation, Discrete Contin. Dyn. Syst., 39, 8, 4455-4469 (2019) · Zbl 1415.35242 · doi:10.3934/dcds.2019182
[23] Ivanov, R., On the integrability of a class of nonlinear dispersive wave equations, J. Nonlinear Math. Phys., 12, 4, 462-468 (2005) · Zbl 1089.35522 · doi:10.2991/jnmp.2005.12.4.2
[24] Kruz̆kov, SN, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81, 123, 228-255 (1970) · Zbl 0202.11203
[25] Leoni, G., A First Course in Sobolev Spaces (2017), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1382.46001 · doi:10.1090/gsm/181
[26] Li, N., Lai, S.: The entropy weak solution to a generalized Fornberg-Whitham equation. Bound. Value Probl., Paper No. 102, 10 (2020) · Zbl 1487.35189
[27] Liu, H., Wave breaking in a class of nonlocal dispersive wave equations, J. Nonlinear Math. Phys., 13, 3, 441-466 (2006) · Zbl 1110.35069 · doi:10.2991/jnmp.2006.13.3.8
[28] Naumkin, PI; Shishmarëv, IA, Nonlinear Nonlocal Equations in the Theory of Waves. Translations of Mathematical Monographs (1994), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0802.35002 · doi:10.1090/mmono/133
[29] Seliger, RL, A note on the breaking of waves, Proc. R. Soc. Lond. Ser. A, 303, 493-496 (1968) · Zbl 0159.28502 · doi:10.1098/rspa.1968.0063
[30] Wei, L., Wave breaking analysis for the Fornberg-Whitham equation, J. Differ. Equ., 265, 7, 2886-2896 (2018) · Zbl 1394.35377 · doi:10.1016/j.jde.2018.04.054
[31] Whitham, GB, Variational methods and applications to water waves, Proc. R. Soc. Lond. Ser. A, 299, 6-25 (1967) · Zbl 0163.21104 · doi:10.1098/rspa.1967.0119
[32] Whitham, GB, Linear and Nonlinear Waves. Wiley-Interscience. Pure and Applied Mathematics (1974), New York: Wiley, New York · Zbl 0373.76001
[33] Zeidler, E., Applied Functional Analysis. Applied Mathematical Sciences. Main Principles and Their Applications (1995), New York: Springer-Verlag, New York · Zbl 0834.46003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.