×

Motion of grain boundaries with dynamic lattice misorientations and with triple junctions drag. (English) Zbl 1467.74020

Summary: Most technologically useful materials are polycrystalline microstructures composed of myriad small monocrystalline grains separated by grain boundaries. The energetics and connectivities of grain boundaries play a crucial role in defining the main characteristics of materials across a wide range of scales. In this work, we propose a model for the evolution of the grain boundary network with dynamic boundary conditions at the triple junctions, with triple junctions drag, and with dynamic lattice misorientations. Using the energetic variational approach, we derive system of geometric differential equations to describe motion of such grain boundaries. Next, we relax the curvature effect of the grain boundaries to isolate the effect of the dynamics of lattice misorientations and triple junctions drag, and we establish local well-posedness result for the considered model.

MSC:

74E15 Crystalline structure
74E25 Texture in solid mechanics
74M25 Micromechanics of solids
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] H. Abels, H. Garcke, and L. Müller, Stability of spherical caps under the volume-preserving mean curvature flow with line tension, Nonlinear Anal., 117 (2015), pp. 8-37, https://doi.org/10.1016/j.na.2014.11.020. · Zbl 1314.53115
[2] P. Bardsley, K. Barmak, E. Eggeling, Y. Epshteyn, D. Kinderlehrer, and S. Ta’asan, Towards a gradient flow for microstructure, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), pp. 777-805, https://doi.org/10.4171/RLM/785. · Zbl 1380.37137
[3] K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp, and S. Ta’asan, Critical events, entropy, and the grain boundary character distribution, Phys. Rev. B, 83 (2011), 134117, https://doi.org/10.1103/PhysRevB.83.134117. · Zbl 1230.37098
[4] K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp, and S. Ta’asan, An entropy based theory of the grain boundary character distribution, Discrete Contin. Dyn. Syst., 30 (2011), pp. 427-454, https://doi.org/10.3934/dcds.2011.30.427. · Zbl 1230.37098
[5] K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, and S. Ta’asan, Geometric growth and character development in large metastable networks, Rend. Mat. Appl. (7), 29 (2009), pp. 65-81. · Zbl 1180.37120
[6] K. Barmak, E. Eggeling, D. Kinderlehrer, R. Sharp, S. Ta’asan, A. Rollett, and K. Coffey, Grain growth and the puzzle of its stagnation in thin films: The curious tale of a tail and an ear, Progr. Materials Sci., 58 (2013), pp. 987-1055, https://doi.org/10.1016/j.pmatsci.2013.03.004.
[7] V. Boltyanski, H. Martini, and V. Soltan, Geometric Methods and Optimization Problems, Combin. Optim. 4, Kluwer, Dordrecht, 1999, https://doi.org/10.1007/978-1-4615-5319-9. · Zbl 0933.90002
[8] K. A. Brakke, The Motion of a Surface by Its Mean Curvature, Math. Notes 20, Princeton University Press, Princeton, NJ, 1978. · Zbl 0386.53047
[9] L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation, Arch. Ration. Mech. Anal., 124 (1993), pp. 355-379, https://doi.org/10.1007/BF00375607. · Zbl 0785.76085
[10] Y. G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33 (1991), pp. 749-786. · Zbl 0696.35087
[11] K. Ecker, Regularity Theory for Mean Curvature Flow, Progr. Nonlinear Differential Equations Appl. 57, Birkhäuser Boston, Boston, MA, 2004, https://doi.org/10.1007/978-0-8176-8210-1. · Zbl 1058.53054
[12] M. Elsey and S. Esedoḡlu, Threshold dynamics for anisotropic surface energies, Math. Comp., 87 (2018), pp. 1721-1756, https://doi.org/10.1090/mcom/3268. · Zbl 1397.65156
[13] M. Elsey, S. Esedoḡlu, and P. Smereka, Diffusion generated motion for grain growth in two and three dimensions, J. Comput. Phys., 228 (2009), pp. 8015-8033, https://doi.org/10.1016/j.jcp.2009.07.020. · Zbl 1175.82065
[14] M. Elsey, S. Esedoḡlu, and P. Smereka, Large-scale simulation of normal grain growth via diffusion-generated motion, Proc. A, 467 (2011), pp. 381-401, https://doi.org/10.1098/rspa.2010.0194. · Zbl 1219.74047
[15] S. Esedoḡlu and F. Otto, Threshold dynamics for networks with arbitrary surface tensions, Comm. Pure Appl. Math., 68 (2015), pp. 808-864, https://doi.org/10.1002/cpa.21527. · Zbl 1334.82072
[16] L. C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geom., 33 (1991), pp. 635-681, http://projecteuclid.org/euclid.jdg/1214446559. · Zbl 0726.53029
[17] H. Garcke, Y. Kohsaka, and D. Ševčovič, Nonlinear stability of stationary solutions for curvature flow with triple function, Hokkaido Math. J., 38 (2009), pp. 721-769, https://doi.org/10.14492/hokmj/1258554242. · Zbl 1187.35013
[18] C. Herring, Surface tension as a motivation for sintering, in Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids, Springer, Berlin, 1999, pp. 33-69, https://doi.org/10.1007/978-3-642-59938-5_2.
[19] L. Kim and Y. Tonegawa, On the mean curvature flow of grain boundaries, Ann. Inst. Fourier (Grenoble), 67 (2017), pp. 43-142, http://aif.cedram.org/item?id=AIF_2017__67_1_43_0. · Zbl 1381.53118
[20] D. Kinderlehrer and C. Liu, Evolution of grain boundaries, Math. Models Methods Appl. Sci., 11 (2001), pp. 713-729, https://doi.org/10.1142/S0218202501001069. · Zbl 1036.74041
[21] D. Kinderlehrer, I. Livshits, and S. Ta’asan, A variational approach to modeling and simulation of grain growth, SIAM J. Sci. Comput., 28 (2006), pp. 1694-1715, https://doi.org/10.1137/030601971. · Zbl 1126.82044
[22] R. V. Kohn, Irreversibility and the statistics of grain boundaries, Physics, 4 (2011), 33.
[23] A. Magni, C. Mantegazza, and M. Novaga, Motion by curvature of planar networks, II, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 15 (2016), pp. 117-144. · Zbl 1339.53063
[24] C. Mantegazza, Evolution by curvature of networks of curves in the plane, in Variational Problems in Riemannian Geometry, Progr. Nonlinear Differential Equations Appl. 59, Birkhäuser, Basel, 2004, pp. 95-109. · Zbl 1073.53085
[25] C. Mantegazza, M. Novaga, and A. Pluda, Motion by curvature of networks with two triple junctions, Geom. Flows, 2 (2016), pp. 18-48, https://doi.org/10.1515/geofl-2016-0002. · Zbl 1398.53076
[26] C. Mantegazza, M. Novaga, A. Pluda, and F. Schulze, Evolution of Networks with Multiple Junctions, https://arxiv.org/abs/1611.08254, 2018.
[27] C. Mantegazza, M. Novaga, and V. M. Tortorelli, Motion by curvature of planar networks, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 3 (2004), pp. 235-324. · Zbl 1170.53313
[28] W. W. Mullins, Two‐dimensional motion of idealized grain boundaries, J. Appl. Phys., 27 (1956), pp. 900-904, https://doi.org/10.1063/1.1722511.
[29] W. W. Mullins, Theory of thermal grooving, J. Appl. Phys., 28 (1957), pp. 333-339, https://doi.org/10.1063/1.1722742.
[30] W. W. Mullins, Solid surface morphologies governed by capillarity, in Metal Surfaces: Structure, Energetics and Kinetics, American Society for Metals, Metals Park, OH, 1963, pp. 17-66.
[31] W. T. Read and W. Shockley, Dislocation models of crystal grain boundaries, Phys. Rev., 78 (1950), pp. 275-289, https://doi.org/10.1103/PhysRev.78.275. · Zbl 0037.13303
[32] S. L. Thomas, C. Wei, J. Han, Y. Xiang, and D. J. Srolovitz, Disconnection description of triple-junction motion, Proc. Natl. Acad. Sci., 116 (2019), pp. 8756-8765, https://doi.org/10.1073/pnas.1820789116. · Zbl 1431.74039
[33] M. Upmanyu, D. Srolovitz, L. Shvindlerman, and G. Gottstein, Molecular dynamics simulation of triple junction migration, Acta Materialia, 50 (2002), pp. 1405-1420, https://doi.org/10.1016/S1359-6454(01)00446-3.
[34] M. Upmanyu, D. J. Srolovitz, L. S. Shvindlerman, and G. Gottstein, Triple junction mobility: A molecular dynamics study, Interface Sci., 7 (1999), pp. 307-319, https://doi.org/10.1023/A:1008781611991.
[35] L. Zhang, J. Han, Y. Xiang, and D. J. Srolovitz, Equation of motion for a grain boundary, Phys. Rev. Lett., 119 (2017), 246101, https://doi.org/10.1103/PhysRevLett.119.246101.
[36] L. Zhang and Y. Xiang, Motion of grain boundaries incorporating dislocation structure, J. Mech. Phys. Solids, 117 (2018), pp. 157-178, https://doi.org/10.1016/j.jmps.2018.05.001.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.