Aliev, Rashid A.; Ahmadova, Aynur N. Discrete Ahlfors-Beurling transform and its properties. (English) Zbl 1468.44003 Probl. Anal. Issues Anal. 9(27), No. 2, 3-15 (2020). Summary: The Ahlfors-Beurling transform has been well studied on classical Lebesgue, Morrey, Sobolev, Besov, Campanato, etc. spaces. However, its discrete version is still not studied well. In this paper, we study the properties of the discrete Ahlfors-Beurling transform on discrete Lebesgue spaces. Cited in 1 Document MSC: 44A15 Special integral transforms (Legendre, Hilbert, etc.) 39A12 Discrete version of topics in analysis 46B45 Banach sequence spaces 42B35 Function spaces arising in harmonic analysis Keywords:discrete Ahlfors-Beurling transform; Lebesgue spaces; boundedness PDF BibTeX XML Cite \textit{R. A. Aliev} and \textit{A. N. Ahmadova}, Probl. Anal. Issues Anal. 9(27), No. 2, 3--15 (2020; Zbl 1468.44003) Full Text: DOI MNR References: [1] Ahlfors L. V., Lectures on Quasiconformal Mappings, University Lecture Series, 38, 2nd ed., AMS, Providence, RI, 2006 · Zbl 1103.30001 [2] Aliev R. A., Amrahova A. F., “Properties of the discrete Hilbert transform”, Complex Analysis and Operator Theory, 13 (2019), 3883-3897 · Zbl 1458.44001 [3] Aliev R. A., Amrahova A. F., “On the summability of the discrete Hilbert transform”, Ural Math. J., 4:2 (2018), 6-12 · Zbl 07255652 [4] Aliev R. A., Nabiyeva Kh. I., “The A-integral and restricted Ahlfors-Beurling transform”, Integral Transforms and Special Functions, 29:10 (2018), 820-830 · Zbl 1395.44011 [5] Astala K., Iwaniec T., Martin G., Elliptic partial differential equations and quasiconformal mappings in the plane, University Press, Princeton, 2009 · Zbl 1182.30001 [6] Banuelos R., Janakiraman P., “\(L^p \)-bounds for the Beurling-Ahlfors transform”, Trans. Amer. Math. Soc., 360:7 (2008), 3603-3612 · Zbl 1220.42012 [7] Calderon A. P., Zygmund A., “On the existence of certain singular integrals”, Acta Mathematica, 88 (1952), 85-139 · Zbl 0047.10201 [8] Cruz V., Mateu J., Orobitg J., “Beltrami equation with coefficient in Sobolev and Besov spaces”, Canadian J. Math., 65:6 (2013), 1217-1235 · Zbl 1294.30036 [9] Cruz V., Tolsa X., “Smoothness of the Beurling transform in Lipschitz domains”, J. Func. Anal., 262:10 (2012), 4423-4457 · Zbl 1250.42040 [10] Doubtsov E., Vasin A. V., “Restricted Beurling transforms on Campanato spaces”, Complex Variables and Elliptic Eq., 62:3 (2017), 333-346 · Zbl 1376.30040 [11] Dragicevic O., “Weighted estimates for powers of the Ahlfors-Beurling operators”, Proc. Amer. Math. Soc., 139:6 (2011), 2113-2120 · Zbl 1230.42017 [12] Kwok-Pun H., “The Ahlfors-Beurling transform on Morrey spaces with variable exponents”, Integral Transforms and Special Functions, 29:3 (2018), 207-220 · Zbl 1388.42041 [13] Mateu J., Orobitg J., Verdera J., “Extra cancellation of even Calderon-Zygmund operators and quasiconformal mappings”, J. Math. Pures et Appl., 91:4 (2009), 402-431 · Zbl 1179.30017 [14] Prats M., “\(L^p \)-bounds for the Beurling-Ahlfors transform”, Publicacions Mat., 61:2 (2017), 291-336 · Zbl 1375.30026 [15] Riesz M., “Sur les fonctions conjuguees”, Mathematische Zeitschrift, 27 (1928), 218-244 · JFM 53.0259.02 [16] Stein E.M., Singular Integrals and Differentiability Properties of Functions, University Press, Princeton, 1970 · Zbl 0207.13501 [17] Titchmarsh E. C., “Reciprocal formulae involving series and integrals”, Math. Z., 25 (1926), 321-347 · JFM 52.0213.03 [18] Tolsa X., “Regularity of \(C^1\) and Lipschitz domains in terms of the Beurling transform”, J. Math. Pures et Appl., 100 (2013), 137-165 · Zbl 1284.44001 [19] Vasin A.V., “Regularity of the Beurling Transform in Smooth Domains”, J. Math. Sciences, 215:5 (2016), 577-584 · Zbl 1351.44004 [20] Vekua I.N., Generalized analytic functions, Pergamon Press, 1962 · Zbl 0100.07603 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.