×

Self-intersections of closed parametrized minimal surfaces in generic Riemannian manifolds. (English) Zbl 1468.53058

Summary: This article shows that for generic choice of Riemannian metric on a compact oriented manifold \(M\) of dimension four, the tangent planes at any self-intersection \(p \in M\) of any prime closed parametrized minimal surface in \(M\) are not simultaneously complex for any orthogonal complex structure on \(M\) at \(p\). This implies via geometric measure theory that \(H_2(M;\mathbb{Z})\) is generated by homology classes that are represented by oriented imbedded minimal surfaces.

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
57K40 General topology of 4-manifolds
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abraham, R., Lectures of Smale on Differential Topology (1963), New York: Columbia University, New York
[2] Abraham, R.; Marsden, J.; Ratiu, T., Manifolds, Tensor Analysis and Applications (1988), New York: Springer, New York · Zbl 0875.58002 · doi:10.1007/978-1-4612-1029-0
[3] Abraham, R.; Robbin, J., Transversal Mappings and Flows (1967), New York: Benjamin, New York · Zbl 0171.44404
[4] Chang, S., Two dimensional area minimizing integral currents are classical minimal surfaces, J. Amer. Math. Soc, 1, 699-778 (1988) · Zbl 0667.49026
[5] Eells, J., A setting for global analysis, Bull. Amer. Math. Soc., 72, 751-807 (1966) · doi:10.1090/S0002-9904-1966-11558-6
[6] Eells, J.; Salamon, S., Twistorial construction of harmonic maps of surfaces into four manifolds, Ann. Sc. Norm. Super. Pisa, 12, 589-640 (1985) · Zbl 0627.58019
[7] Golubitsky, M.; Guillemin, V., Stable Manifolds and Their Singularities (1973), New York: Springer, New York · Zbl 0294.58004 · doi:10.1007/978-1-4615-7904-5
[8] Moore, JD, Lectures on Seiberg-Witten Invariants (2001), New York: Springer, New York · Zbl 1036.57014
[9] Moore, JD, Bumpy metrics and closed parametrized minimal surfaces in Riemannian manifolds, Trans. Amer. Math. Soc., 358, 5193-5256 (2006) · Zbl 1126.53031 · doi:10.1090/S0002-9947-06-04317-0
[10] Moore, JD, Nondegeneracy of coverings of minimal tori in Riemannian manifolds, Pacific J. Math., 230, 147-166 (2007) · Zbl 1154.53037 · doi:10.2140/pjm.2007.230.147
[11] Moore, J. D.: Introduction to Global Analysis: Minimal Surfaces in Riemannian Manifolds, AMS Graduate Studies in Mathematics no. 187. American Mathematical Society, Providence (2017) · Zbl 1484.53002
[12] Morgan, F., On the singular structure of two-dimensional area minimizing surfaces in \({{\mathbb{R}}}^n\), Math. Ann., 261, 101-110 (1982) · Zbl 0549.49029 · doi:10.1007/BF01456413
[13] Smale, S., An infinite-dimensional version of Sard’s theorem, Amer. J. Math., 87, 861-866 (1966) · Zbl 0143.35301 · doi:10.2307/2373250
[14] White, B., Generic regularity of unoriented two-dimensional area minimizing surfaces, Ann. Math., 121, 595-603 (1985) · doi:10.2307/1971211
[15] White, B.: Generic transversality of minimal submanifolds and generic regularity of two-dimensional area-minimizing integral currents, to appear. arxiv:1901.05148
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.