×

A heuristic for boundedness of ranks of elliptic curves. (English) Zbl 1469.11173

Summary: We present a heuristic that suggests that ranks of elliptic curves \(E\) over \(\mathbb{Q}\) are bounded. In fact, it suggests that there are only finitely many \(E\) of rank greater than 21. Our heuristic is based on modeling the ranks and Shafarevich-Tate groups of elliptic curves simultaneously, and relies on a theorem counting alternating integer matrices of specified rank. We also discuss analogues for elliptic curves over other global fields.

MSC:

11G05 Elliptic curves over global fields
11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
11P21 Lattice points in specified regions
14G25 Global ground fields in algebraic geometry

Software:

Magma; ecdata
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Batyrev, V. V., Manin, Yu. I.: Sur le nombre des points rationnels de hauteur borné des variétés algébriques. Math. Ann. 286, 27-43 (1990)Zbl 0679.14008 MR 1032922 · Zbl 0679.14008
[2] Bektemirov, B., Mazur, B., Stein, W., Watkins, M.: Average ranks of elliptic curves: tension between data and conjecture. Bull. Amer. Math. Soc. (N.S.) 44, 233-254 (2007)Zbl 1190.11032 MR 2291676 · Zbl 1190.11032
[3] Bhargava, M., Kane, D. M., Lenstra, H. W., Jr., Poonen, B., Rains, E.: Modeling the distribution of ranks, Selmer groups, and Shafarevich-Tate groups of elliptic curves. Cambridge J. Math. 3, 275-321 (2015)Zbl 1329.14071 MR 3393023 · Zbl 1329.14071
[4] Bhargava, M., Skinner, C., Zhang, W.: A majority of elliptic curves over Q satisfy the Birch and Swinnerton-Dyer conjecture.arXiv:1407.1826v2(2014)
[5] Brumer, A.: The average rank of elliptic curves. I. Invent. Math. 109, 445-472 (1992) Zbl 0783.14019 MR 1176198 · Zbl 0783.14019
[6] Brumer, A., McGuinness, O.: The behavior of the Mordell-Weil group of elliptic curves. Bull. Amer. Math. Soc. (N.S.) 23, 375-382 (1990)Zbl 0741.14010 MR 1044170 · Zbl 0741.14010
[7] Cassels, J. W. S.: Arithmetic on curves of genus 1. IV. Proof of the Hauptvermutung. J. Reine Angew. Math. 211, 95-112 (1962)Zbl 106.03706 MR 0163915 · Zbl 0106.03706
[8] Cassels, J. W. S.: Diophantine equations with special reference to elliptic curves. J. London Math. Soc. 41, 193-291 (1966)Zbl 0138.27002 MR 0199150 · Zbl 0138.27002
[9] Cohen, H., Lenstra, H. W., Jr.: Heuristics on class groups of number fields. In: Number Theory, Noordwijkerhout 1983, Lecture Notes in Math. 1068, Springer, Berlin, 33-62 (1984)Zbl 0558.12002 MR 756082 · Zbl 0558.12002
[10] Cohen, H., Martinet, J.: Étude heuristique des groupes de classes des corps de nombres. J. Reine Angew. Math. 404, 39-76 (1990)Zbl 0699.12016 MR 1037430 · Zbl 0699.12016
[11] Conrey, J. B., Ghosh, A.: Remarks on the generalized Lindelöf hypothesis. Funct. Approx. Comment. Math. 36, 71-78 (2006)Zbl 1196.11121 MR 2296639 · Zbl 1196.11121
[12] Conrey, J. B., Keating, J. P., Rubinstein, M. O., Snaith, N. C.: On the frequency of vanishing of quadratic twists of modular L-functions. In: Number Theory for the Millennium, I (Urbana, IL, 2000), A K Peters, Natick, MA, 301-315 (2002) Zbl 1044.11035 MR 1956231 · Zbl 1044.11035
[13] Conrey, J. B., Rubinstein, M. O., Snaith, N. C., Watkins, M.: Discretisation for odd quadratic twists. In: Ranks of Elliptic Curves and Random Matrix Theory, London Math. Soc. Lecture Note Ser. 341, Cambridge Univ. Press, Cambridge, 201-214 (2007)Zbl 1193.11064 MR 2322346 A heuristic for boundedness of ranks of elliptic curves2899 · Zbl 1193.11064
[14] Cornut, C.: Mazur’s conjecture on higher Heegner points. Invent. Math. 148, 495-523 (2002)Zbl 111.11029 MR 1908058 · Zbl 1111.11029
[15] Cremona, J. E.: Algorithms for Modular Elliptic Curves. 2nd ed., Cambridge Univ. Press, Cambridge (1997)Zbl 0872.14041 MR 1628193 · Zbl 0872.14041
[16] D ˛abrowski, A., J˛edrzejak, T., Szymaszkiewicz, L.: Behaviour of the order of Tate- Shafarevich groups for the quadratic twists of (X0)(49). In: Elliptic Curves, Modular Forms and Iwasawa Theory, Springer Proc. Math. Statist. 188, Springer, Cham, 125- 159 (2016)Zbl 1398.11087 MR 3629650 · Zbl 1398.11087
[17] Delaunay, C.: Heuristics on Tate-Shafarevitch groups of elliptic curves defined over Q. Experiment. Math. 10, 191-196 (2001)Zbl 045.11038 MR 1837670 · Zbl 1045.11038
[18] Delaunay, C.: Moments of the orders of Tate-Shafarevich groups. Int. J. Number Theory 1, 243-264 (2005)Zbl 1082.11042 MR 2173383 · Zbl 1082.11042
[19] Delaunay, C.: Heuristics on class groups and on Tate-Shafarevich groups: the magic of the Cohen-Lenstra heuristics. In: Ranks of Elliptic Curves and Random Matrix Theory, London Math. Soc. Lecture Note Ser. 341, Cambridge Univ. Press, Cambridge, 323-340 (2007)Zbl 1231.11129 MR 2322355 · Zbl 1231.11129
[20] Delaunay, C.,Duquesne, S.: Numerical investigations related to the derivatives of the L-series of certain elliptic curves. Experiment. Math. 12, 311-317 (2003) Zbl 1083.11041 MR 2034395 · Zbl 1083.11041
[21] Delaunay, C., Jouhet, F.: p‘-torsion points in finite abelian groups and combinatorial identities. Adv. Math. 258, 13-45 (2014)Zbl 1286.11087 MR 3190422 · Zbl 1286.11087
[22] Delaunay, C., Roblot, X.-F.: Regulators of rank one quadratic twists. J. Théor. Nombres Bordeaux 20, 601-624 (2008)Zbl 1201.11057 MR 2523310 · Zbl 1201.11057
[23] Delaunay, C.,Watkins, M.: The powers of logarithm for quadratic twists. In: Ranks of Elliptic Curves and Random Matrix Theory, London Math. Soc. Lecture Note Ser. 341, Cambridge Univ. Press, Cambridge, 189-193 (2007)Zbl 1213.11117 MR 2322344 · Zbl 1213.11117
[24] Deninger, C.: The Hilbert-Pólya strategy and height pairings. In: Casimir Force, Casimir Operators and the Riemann Hypothesis, de Gruyter, Berlin, 275-283 (2010) Zbl 225.14018 MR 2777722 · Zbl 1225.14018
[25] Dujella, A.: Infinite families of elliptic curves with high rank and prescribed torsion. http://web.math.pmf.unizg.hr/∼duje/tors/generic.html(2017)
[26] Duke, W., Rudnick, Z., Sarnak, P.: Density of integer points on affine homogeneous varieties. Duke Math. J. 71, 143-179 (1993)Zbl 0798.11024 MR 1230289 · Zbl 0798.11024
[27] Durrett, R.: Probability: Theory and Examples. 4th ed. Cambridge Ser. Statist. Probab. Math., Cambridge Univ. Press, Cambridge (2010)Zbl 1202.60001 MR 2722836 · Zbl 1202.60001
[28] Elkies, N. D.: Curves Dy2=x3−xof odd analytic rank. In: Algorithmic Number Theory (Sydney, 2002), Lecture Notes in Computer Sci. 2369, Springer, Berlin, 244- 251 (2002)Zbl 1058.11034 MR 2041088 · Zbl 1058.11034
[29] Elkies, N. D.: Z28in E(Q), etc. Email to nmbrthry@listserv.nodak.edu (2006)
[30] Eskin, A., Katznelson, Y. R.: Singular symmetric matrices. Duke Math. J. 79, 515- 547 (1995)Zbl 0832.11036 MR 1344769 · Zbl 0832.11036
[31] Farmer, D. W., Gonek, S. M., Hughes, C. P.: The maximum size of L-functions. J. Reine Angew. Math. 609, 215-236 (2007)Zbl 1234.11109 MR 2350784 · Zbl 1234.11109
[32] Fouvry, É., Klüners, J.: On the 4-rank of class groups of quadratic number fields. Invent. Math. 167, 455-513 (2007)Zbl 1126.11062 MR 2276261 · Zbl 1126.11062
[33] Friedman, E., Washington, L. C.: On the distribution of divisor class groups of curves over a finite field. In: Théorie des nombres (Quebec, PQ, 1987), de Gruyter, Berlin, 227-239 (1989)Zbl 0693.12013 MR 1024565 2900Jennifer Park et al. · Zbl 0693.12013
[34] Furstenberg, H., Katznelson, Y.: A density version of the Hales-Jewett theorem. J. Anal. Math. 57, 64-119 (1991)Zbl 0770.05097 MR 1191743 · Zbl 0770.05097
[35] Gerth, F., III: Extension of conjectures of Cohen and Lenstra. Exposition. Math. 5, 181-184 (1987)Zbl 0613.12003 MR 887792 · Zbl 0613.12003
[36] Goldfeld, D.: Conjectures on elliptic curves over quadratic fields. In: Number Theory, Carbondale 1979, Lecture Notes in Math. 751, Springer, Berlin, 108-118 (1979) Zbl 0417.14031 MR 564926 · Zbl 0417.14031
[37] Goldfeld, D., Szpiro, L.: Bounds for the order of the Tate-Shafarevich group. Compos. Math. 97, 71-87 (1995)Zbl 860.11032 MR 1355118 · Zbl 0860.11032
[38] Granville, A.: Harald Cramér and the distribution of prime numbers. Scand. Actuar. J. 1995, 12-28Zbl 0833.01018 MR 1349149 · Zbl 0833.01018
[39] Granville, A.: ABC allows us to count squarefrees. Int. Math. Res. Notices 1998, 991-1009Zbl 0924.11018 MR 1654759 · Zbl 0924.11018
[40] Gross, B. H.: Heights and the special values of L-series. In: Number Theory (Montreal, Que., 1985), CMS Conf. Proc. 7, Amer. Math. Soc., Providence, RI, 115- 187 (1987)Zbl 0623.10019 MR 894322 · Zbl 0623.10019
[41] Hall, P.: A partition formula connected with Abelian groups. Comment. Math. Helv. 11, 126-129 (1938)Zbl 0019.39705 MR 1509594 · JFM 64.0060.04
[42] Harron, R., Snowden, A.: Counting elliptic curves with prescribed torsion. J. Reine Angew. Math. 729, 151-170 (2017)Zbl 1378.11067 MR 3680373 · Zbl 1378.11067
[43] Hindry, M.: Why is it difficult to compute the Mordell-Weil group? In: Diophantine Geometry, CRM Ser. 4, Ed. Normale, Pisa, 197-219 (2007)Zbl 1219.11099 MR 2349656 · Zbl 1219.11099
[44] Hindry, M., Pacheco, A.: An analogue of the Brauer-Siegel theorem for abelian varieties in positive characteristic. Moscow Math. J. 16, 45-93 (2016)Zbl 1382.11041 MR 3470576 · Zbl 1382.11041
[45] Hindry, M., Silverman, J. H.: The canonical height and integral points on elliptic curves. Invent. Math. 93, 419-450 (1988)Zbl 0657.14018 MR 948108 · Zbl 0657.14018
[46] Honda, T.: Isogenies, rational points and section points of group varieties. Japan. J. Math. 30, 84-101 (1960)Zbl 0109.39602 MR 0155828 · Zbl 0109.39602
[47] Hortsch, R.: Counting elliptic curves of bounded Faltings height.arXiv:1505.05112v1 (2015) · Zbl 1355.11068
[48] Iwaniec, H.,Sarnak, P.: Perspectives on the analytic theory of L-functions. In: GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal., Special Volume, 705-741 (2000) Zbl 0996.11036 MR 1826269 · Zbl 0996.11036
[49] Katz, N. M.,Sarnak, P.: Random Matrices, Frobenius Eigenvalues, and Monodromy. Amer. Math. Soc. Colloq. Publ. 45, Amer. Math. Soc., Providence, RI (1999) Zbl 0958.11004 MR 1659828 · Zbl 0958.11004
[50] Katz, N. M., Sarnak, P.: Zeroes of zeta functions and symmetry. Bull. Amer. Math. Soc. (N.S.) 36, 1-26 (1999)Zbl 0921.11047 MR 1640151 · Zbl 0921.11047
[51] Keating, J. P., Snaith, N. C.: Random matrix theory and L-functions at s = 1/2. Comm. Math. Phys. 214, 91-110 (2000)Zbl 1051.11047 MR 1794267 · Zbl 1051.11047
[52] Kohnen, W., Zagier, D.: Values of L-series of modular forms at the center of the critical strip. Invent. Math. 64, 175-198 (1981)Zbl 0468.10015 MR 629468 · Zbl 0468.10015
[53] Kurchanov, P. F.: The zeta-function of elliptic curves over certain abelian extensions of imaginary quadratic fields. Mat. Sb. (N.S.) 102 (144), 56-70, 151 (1977) (in Russian)Zbl 0443.12004MR 0498391 · Zbl 0443.12004
[54] Lang, S.: Conjectured Diophantine estimates on elliptic curves. In: Arithmetic and Geometry, Vol. I, Progr. Math. 35, Birkhäuser Boston, Boston, MA, 155-171 (1983) Zbl 0529.14017 MR 717593 A heuristic for boundedness of ranks of elliptic curves2901 · Zbl 0529.14017
[55] Lang, S.: Old and new conjectured Diophantine inequalities. Bull. Amer. Math. Soc. (N.S.) 23, 37-75 (1990)Zbl 0714.11034 MR 1005184 · Zbl 0714.11034
[56] Lang, S.: Algebraic Number Theory. 2nd ed. Grad. Texts in Math. 110, Springer, New York (1994)Zbl 0811.11001 MR 1282723 · Zbl 0811.11001
[57] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24, 235-265 (1997)Zbl 0898.68039 MR 1484478 · Zbl 0898.68039
[58] Mazur, B.: Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math. 47, 33-186 (1978) (1977)Zbl 0394.14008 MR 488287 · Zbl 0394.14008
[59] Mazur, B.: Modular curves and arithmetic. In: Proc. International Congress of Mathematicians (Warszawa, 1983), Vol. 1, PWN, Warszawa, 185-211 (1984) Zbl 0597.14023 MR 804682 · Zbl 0597.14023
[60] Merel, L.: Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124, 437-449 (1996)Zbl 0936.11037 MR 1369424 · Zbl 0936.11037
[61] Mestre, J.-F.: Construction d’une courbe elliptique de rang ≥ 12. C. R. Acad. Sci. Paris Sér. I Math. 295, 643-644 (1982)Zbl 0541.14027 MR 688896 · Zbl 0541.14027
[62] Mestre, J.-F.: Formules explicites et minorations de conducteurs de variétés algébriques. Compos. Math. 58, 209-232 (1986)Zbl 0607.14012 MR 844410 · Zbl 0607.14012
[63] Mordell, L. J.: On the rational solutions of the indeterminate equations of the third and fourth degrees. Proc. Cambridge Philos. Soc. 21, 179-192 (1922) · JFM 48.0140.03
[64] Néron, A.: Problèmes arithmétiques et géométriques rattachés à la notion de rang d’une courbe algébrique dans un corps. Bull. Soc. Math. France 80, 101-166 (1952) Zbl 0049.30803 MR 0056951 · Zbl 0049.30803
[65] Néron, A.: Propriétés arithmétiques de certaines familles de courbes algébriques. In: Proc. International Congress of Mathematicians (Amsterdam, 1954), Vol. III, Noordhoff, Groningen, and North-Holland, Amsterdam, 481-488 (1956)Zbl 0074.15901 MR 0087210 · Zbl 0074.15901
[66] Ono, K., Skinner, C.: Non-vanishing of quadratic twists of modular L-functions. Invent. Math. 134, 651-660 (1998)Zbl 0937.11017 MR 1660945 · Zbl 0937.11017
[67] Poincaré, H.: Sur les propriétés arithmétiques des courbes algébriques. J. Math. Pures Appl. (5) 7, 161-234 (1901)JFM 32.0564.06 · JFM 32.0564.06
[68] Poincaré, H.: Œuvres d’Henri Poincaré, Volume 5. Gauthier-Villars, Paris (1950) Zbl 0041.37403
[69] Polymath, D. H. J.: A new proof of the density Hales-Jewett theorem. Ann. of Math. (2) 175, 1283-1327 (2012)Zbl 1267.11010 MR 2912706 · Zbl 1267.11010
[70] Poonen, B.: Squarefree values of multivariable polynomials. Duke Math. J. 118, 353-373 (2003)Zbl 1047.11021 MR 1980998 · Zbl 1047.11021
[71] Poonen, B., Rains, E.: Random maximal isotropic subspaces and Selmer groups. J. Amer. Math. Soc. 25, 245-269 (2012)Zbl 1294.11097 MR 2833483 · Zbl 1294.11097
[72] Poonen, B., Stoll, M.: The Cassels-Tate pairing on polarized abelian varieties. Ann. of Math. (2) 150, 1109-1149 (1999)Zbl 1024.11040 MR 1740984 · Zbl 1024.11040
[73] Rubin, K., Silverberg, A.: Ranks of elliptic curves in families of quadratic twists. Experiment. Math. 9, 583-590 (2000)Zbl 0959.11023 MR 1806293 · Zbl 0959.11023
[74] Rubin, K., Silverberg, A.: Rank frequencies for quadratic twists of elliptic curves. Experiment. Math. 10, 559-569 (2001)Zbl 1035.11025 MR 1881757 · Zbl 1035.11025
[75] Rubin, K., Silverberg, A.: Ranks of elliptic curves. Bull. Amer. Math. Soc. (N.S.) 39, 455-474 (2002)Zbl 1052.11039 MR 1920278 · Zbl 1052.11039
[76] Sarnak, P.: Some Applications of Modular Forms. Cambridge Tracts in Math. 99, Cambridge Univ. Press, Cambridge (1990)Zbl 1141.11023 MR 1102679 2902Jennifer Park et al. · Zbl 0721.11015
[77] Schmidt, W. M.: Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height. Duke Math. J. 35, 327-339 (1968)Zbl 0172.06304 MR 0224562 · Zbl 0172.06304
[78] Serre, J.-P.: Lectures on the Mordell-Weil Theorem. 3rd ed., Aspects of Math., Vieweg, Braunschweig (1997)Zbl 0863.14013 MR 1757192 · Zbl 0863.14013
[79] Shioda, T.: Some remarks on elliptic curves over function fields. In: Journées Arithmétiques (Genève, 1991), Astérisque 209, 12, 99-114 (1992)Zbl 0820.14016 MR 1211006 · Zbl 0820.14016
[80] Silverman, J. H.: Lower bound for the canonical height on elliptic curves. Duke Math. J. 48, 633-648 (1981)Zbl 0475.14033 MR 630588 · Zbl 0475.14033
[81] Silverman, J. H.: Heights and the specialization map for families of abelian varieties. J. Reine Angew. Math. 342, 197-211 (1983)Zbl 0505.14035 MR 703488 · Zbl 0505.14035
[82] Silverman, J. H.: Heights and elliptic curves. In: Arithmetic Geometry (Storrs, CN, 1984), Springer, New York, 253-265 (1986)Zbl 0603.14020 MR 861979 · Zbl 0603.14020
[83] Silverman, J. H.: The Arithmetic of Elliptic Curves. Grad. Texts in Math. 106, Springer, New York (1992)MR 1329092
[84] Silverman, J. H.: The Arithmetic of Elliptic Curves. 2nd ed. Grad. Texts in Math. 106, Springer, Dordrecht (2009)Zbl 1194.11005 MR 2514094 · Zbl 1194.11005
[85] Stein, W., Wuthrich, C.: Algorithms for the arithmetic of elliptic curves using Iwasawa theory. Math. Comp. 82, 1757-1792 (2013)Zbl 1336.11047 MR 3042584 · Zbl 1336.11047
[86] Stewart, C. L., Top, J.: On ranks of twists of elliptic curves and power-free values of binary forms. J. Amer. Math. Soc. 8, 943-973 (1995)Zbl 0857.11026 MR 1290234 · Zbl 0857.11026
[87] Tate, J. T.: The arithmetic of elliptic curves. Invent. Math. 23, 179-206 (1974) Zbl 0296.14018 MR 0419359 · Zbl 0296.14018
[88] Tate, J.: On the conjectures of Birch and Swinnerton-Dyer and a geometric analog. In: Séminaire Bourbaki, Vol. 9, exp. 306, Soc. Math. France, Paris, 415-440 (1995) Zbl 0199.55604 MR 1610977
[89] Tate, J., Shafarevich, I. R.: The rank of elliptic curves. Dokl. Akad. Nauk SSSR 175, 770-773 (1967) (in Russian)Zbl 0168.42201 MR 0237508 · Zbl 0168.42201
[90] Ulmer, D.: Elliptic curves with large rank over function fields. Ann. of Math. (2) 155, 295-315 (2002)Zbl 1109.11314 MR 1888802 · Zbl 1109.11314
[91] Vatsal, V.: Special values of anticyclotomic L-functions. Duke Math. J. 116, 219-261 (2003)Zbl 1065.11048 MR 1953292 · Zbl 1065.11048
[92] Venkatesh, A., Ellenberg, J. S.: Statistics of number fields and function fields. In: Proc. International Congress of Mathematicians (Allahabad, 2010), Vol. II, Hindustan Book Agency, New Delhi, 383-402 (2010)Zbl 1259.11106 MR 2827801 · Zbl 1259.11106
[93] Waldspurger, J.-L.: Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. Math. Pures Appl. (9) 60, 375-484 (1981)Zbl 0431.10015 MR 646366 · Zbl 0431.10015
[94] Wang, Y., Stanley, R. P.: The Smith normal form distribution of a random integer matrix. SIAM J. Discrete Math. 31, 2247-2268 (2017)Zbl 1372.05006 MR 3706911 · Zbl 1372.05006
[95] Watkins, M.: Some heuristics about elliptic curves. Experiment. Math. 17, 105-125 (2008)Zbl 1151.14025 MR 2410120 · Zbl 1151.14025
[96] Watkins, M.: On elliptic curves and random matrix theory. J. Théor. Nombres Bordeaux 20, 829-845 (2008)Zbl 1193.11058 MR 2523320 · Zbl 1193.11058
[97] Watkins, M.: A discursus on 21 as a bound for ranks of elliptic curves over Q, and sundry related topics.http://magma.maths.usyd.edu.au/∼watkins/papers/ DISCURSUS.pdf(2015) A heuristic for boundedness of ranks of elliptic curves2903 [Wat+14]Watkins, M., Donnelly, S., Elkies, N. D., Fisher, T., Granville, A., Rogers, N. F.: Ranks of quadratic twists of elliptic curves. Publ. Math. Besançon 2014/2, 63-98 (2014)Zbl 1365.11070 MR 3381037 · Zbl 1365.11070
[98] de Weger, B. M. M.: A + B = C and big X’s. Quart. J. Math. Oxford Ser. (2) 49, 105-128 (1998)Zbl 0917.11020 MR 1617347 · Zbl 0917.11020
[99] Wiles, A.: The Birch and Swinnerton-Dyer conjecture. In: The Millennium Prize Problems, Clay Math. Inst., Cambridge, MA, 31-41 (2006)Zbl 1194.11006 MR 2238272 · Zbl 1194.11006
[100] Wong, S.: On the density of elliptic curves. Compos. Math. 127, 23-54 (2001) Zbl 1003.11023 MR 1832985 · Zbl 1003.11023
[101] Wood, M. M.: The distribution of sandpile groups of random graphs. J. Amer. Math. Soc. 30, 915-958 (2017)Zbl 1366.05098 MR 3671933 · Zbl 1366.05098
[102] Wood, M. M.: Random integral matrices and the Cohen-Lenstra heuristics. Amer. J. Math. 141, 383-398 (2019)Zbl 07057016 MR 3928040 · Zbl 1446.11170
[103] Young, M. P.: On the non-vanishing of elliptic curve L-functions at the central point. Proc. London Math. Soc. (3) 93, 1-42 (2006)Zbl 1174.11052 MR 2235480 · Zbl 1174.11052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.