Riemann-Roch isometries in the non-compact orbifold setting. (English) Zbl 1470.14021

This work is a generalization to Riemann surfaces \(X_\Gamma=\Gamma\backslash\mathbb{H}^2\) of a Grothendieck-Riemann-Roch formula established by P. Deligne [Contemp. Math. 67, 93–117 (1987; Zbl 0629.14008)] and J.-M. Bismut, H. Gillet and C. Soulé [Commun. Math. Phys. 115, No. 1, 49–78, 79–126; No. 2, 301–351 (1988; Zbl 0651.32017)]. Here, \(\Gamma\) is a Fuchsian group of the first kind with singularities of cusp or orbifold type (corresponding to parabolic and elliptic elements of \(\Gamma\)). The main theorem relates the determinant of some cohomology space with a Quillen type metric, Selberg zeta function values and geometry of bundles on moduli spaces of pointed orbicurves. The novelty of this important work is to permit singularities on the surface \(X_\Gamma\): the results of this paper apply to the modular group \(\Gamma=\mathrm{PSL}_2(\mathbb{Z})\) in particular. The core of the paper consists of deep analytic surgery techniques through Mayer-Vietoris formulas for determinants of Laplacians introduced by D. Burghelea, L. Friedlander and L. Kappeler [J. Funct. Anal. 107, No. 1, 34–65 (1992; Zbl 0759.58043)]. With appropriate domains obtained by taking off small \(\varepsilon\)-neighborhood around every singularity and performing the spectral analysis for the \(\varepsilon\to0\) limits, the authors reduce the determinants for the Laplace-Beltrami or Dirichlet-to-Neumann operators to explicit expressions for model hyperbolic cusps and cones. Such computations, which appear notably in theoretical physics literature, are developed here with full mathematical rigor; they can be used for several variants in the geometry of bundles on moduli spaces, such as the Burgos-Kramer-Kühn program of extending arithmetic intersection theory to singular Hermitian vector bundles (see U. Kühn [J. Reine Angew. Math. 534, 209–236 (2001; Zbl 1084.14028)]). As consequences of the main theorem, let us quote the proof of an arithmetic Riemann-Roch formula in the realm of Arakelov geometry and an expression of the Selberg zeta special value \(Z'(1, \mathrm{PSL}_2(\mathbb{Z}))\) in terms of logarithmic derivatives of Dirichlet \(L\)-function values.


14C40 Riemann-Roch theorems
14G40 Arithmetic varieties and schemes; Arakelov theory; heights
11F72 Spectral theory; trace formulas (e.g., that of Selberg)
58J52 Determinants and determinant bundles, analytic torsion
14F43 Other algebro-geometric (co)homologies (e.g., intersection, equivariant, Lawson, Deligne (co)homologies)
Full Text: DOI arXiv


[1] Barvinsky, A. O., Kamenshchik, A. Yu., Karmazin, I. P.: One-loop quantum cosmology: ζ-function technique for the Hartle-Hawking wave function of the Universe. Ann. Phys.219, 201-242 (1992)Zbl 0768.53035 MR 1191935 · Zbl 0768.53035
[2] Bismut, J.-M., Freed, D. S.: The analysis of elliptic families. I. Metrics and connections on determinant bundles. Comm. Math. Phys.106, 159-176 (1986)Zbl 0657.58037 MR 0853982 · Zbl 0657.58037
[3] Bismut, J.-M., Freed, D. S.: The analysis of elliptic families. II. Dirac operators, eta invariants, and the holonomy theorem. Comm. Math. Phys.107, 103-163 (1986)Zbl 0657.58038 MR 0861886 · Zbl 0657.58038
[4] Bismut, J.-M., Gillet, H., Soul´e, C.: Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion. Comm. Math. Phys.115, 49-78 (1988) Zbl 0651.32017 MR 0929146 · Zbl 0651.32017
[5] Bismut, J.-M., Gillet, H., Soul´e, C.: Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott-Chern forms. Comm. Math. Phys.115, 79-126 (1988) Zbl 0651.32017 MR 0929147 · Zbl 0651.32017
[6] Bismut, J.-M., Gillet, H., Soul´e, C.: Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holomorphic determinants. Comm. Math. Phys.115, 301-351 (1988) Zbl 0651.32017 MR 0931666
[7] Bordag, M., Kirsten, K., Dowker, S.: Heat-kernels and functional determinants on the generalized cone. Comm. Math. Phys.182, 371-393 (1996)Zbl 0872.58065 MR 1447298 · Zbl 0872.58065
[8] Bost, J.-B.: Potential theory and Lefschetz theorems for arithmetic surfaces. Ann. Sci. ´Ecole Norm. Sup. (4)32, 241-312 (1999)Zbl 0931.14014 MR 1681810 · Zbl 0931.14014
[9] Burger, M.: Small eigenvalues of Riemann surfaces and graphs. Math. Z.205, 395-420 (1990) Zbl 0729.58050 MR 1082864 · Zbl 0729.58050
[10] Burghelea, D., Friedlander, L., Kappeler, T.: Meyer-Vietoris type formula for determinants of elliptic differential operators. J. Funct. Anal.107, 34-65 (1992)Zbl 0759.58043 MR 1165865 · Zbl 0759.58043
[11] Burgos Gil, J. I., Freixas i Montplet, G., Lit¸canu, R.: Generalized holomorphic analytic torsion. J. Eur. Math. Soc.16, 463-535 (2014)Zbl 1305.58018 MR 3165730 · Zbl 1305.58018
[12] Carron, G.: D´eterminant relatif et la fonction Xi. Amer. J. Math.124, 307-352 (2002) Zbl 1014.34015 MR 1890995 · Zbl 1014.34015
[13] Colin de Verdi‘ere, Y.: Pseudo-laplaciens. II. Ann. Inst. Fourier (Grenoble)33, 87-113 (1983) Zbl 0496.58016 MR 0699488 · Zbl 0496.58016
[14] Colmez, P.: P´eriodes des vari´et´es ab´eliennes ‘a multiplication complexe. Ann. of Math. (2) 138, 625-683 (1993)Zbl 0826.14028 MR 1247996 · Zbl 0826.14028
[15] Deligne, P.: Preuve des conjectures de Tate et de Shafarevitch (d’apr‘es G. Faltings). In: S´eminaire Bourbaki, Vol. 1983/84, exp. 616, Ast´erisque121-122, 25-41 (1985) Zbl 0591.14026 MR 0768952 · Zbl 0591.14026
[16] Deligne, P.: Le d´eterminant de la cohomologie. In: Current Trends in Arithmetical Algebraic Geometry (Arcata, CA, 1985), Contemp. Math. 67, Amer. Math. Soc., Providence, RI, 1987, 93-177.Zbl 0629.14008
[17] Deligne, P., Rapoport, M.: Les sch´emas de modules de courbes elliptiques. In: Modular Functions of One Variable, II (Antwerp, 1972), Lecture Notes in Math. 349, Springer, Berlin, 143-316 (1973)Zbl 0281.14010 MR 0382292 · Zbl 0281.14010
[18] D’Hoker, E., Phong, D. H.: On determinants of Laplacians on Riemann surfaces. Comm. Math. Phys.104, 537-545 (1986)Zbl 0599.30073 MR 0841668 · Zbl 0599.30073
[19] Dutour, M.: A Deligne-Riemann-Roch isometry for flat unitary vector bundles on modular curves. Ph.D. thesis, Sorbonne Univ. (2020)
[20] Efrat, I.: Determinants of Laplacians on surfaces of finite volume. Comm. Math. Phys.119, 443-451 (1988)Zbl 0661.10038 MR 0969211 · Zbl 0661.10038
[21] Erd´elyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Higher Transcendental Functions. Vol. I. Robert E. Krieger, Melbourne, FL (1981)Zbl 0542.33001 MR 0698779
[22] Flachi, A., Knapman, A., Naylor, W., Sasaki, M.: Zeta functions in brane world cosmology. Phys. Rev. D (3)70, no. 12, art. 124011, 13 pp. (2004)MR 2124701
[23] Freixas i Montplet, G.: An arithmetic Riemann-Roch theorem for pointed stable curves. Ann. Sci. ´Ecole Norm. Sup. (4)42, 335-369 (2009)Zbl 1183.14038 MR 2518081 · Zbl 1183.14038
[24] Freixas i Montplet, G.: An arithmetic Hilbert-Samuel theorem for pointed stable curves. J. Eur. Math. Soc.14, 321-351 (2012)Zbl 1244.14019 MR 2881298 · Zbl 1244.14019
[25] Freixas i Montplet, G.: The Riemann-Roch theorem in Arakelov geometry.321, 91-133 (2017)Zbl 1386.14095 MR 3675379 · Zbl 1386.14095
[26] Friedman, J. S., Jorgenson, J., Smajlovic, L.: The determinant of the Lax-Phillips scattering operator.arXiv:1603.07613(2016)
[27] Fucci, G., Kirsten, K.: Heat kernel coefficients for Laplace operators on the spherical suspension. Comm. Math. Phys.314, 483-507 (2012)Zbl 1252.58012 MR 2958961 · Zbl 1252.58012
[28] Garbin, D., Jorgenson, J.: Spectral asymptotics on sequences of elliptically degenerating Riemann surfaces. Enseign. Math.64, 161-206 (2018)Zbl 07087304 MR 3959852 · Zbl 1444.58012
[29] Gillet, H., Soul´e, C.: An arithmetic Riemann-Roch theorem. Invent. Math.110, 473-543 (1992)Zbl 0777.14008 MR 1189489 · Zbl 0777.14008
[30] Gradshteyn, I. S., Ryzhik, I. M.: Table of Integrals, Series, and Products. 7th ed., Elsevier/Academic Press, Amsterdam (2007)Zbl 1208.65001 MR 2360010 · Zbl 1208.65001
[31] Iwaniec, H.: Introduction to the Spectral Theory of Automorphic Forms. Revista Mat. Iberoamericana, Madrid (1995)Zbl 0847.11028 MR 1325466 · Zbl 0847.11028
[32] Katz, N. M., Mazur, B.: Arithmetic Moduli of Elliptic Curves. Ann. of Math. Stud. 108, Princeton Univ. Press, Princeton, NJ (1985)Zbl 0576.14026 MR 0772569 · Zbl 0576.14026
[33] Khusnutdinov, N. R.: On the uniform asymptotic expansion of the Legendre functions. J. Math. Phys.44, 2320-2330 (2003)Zbl 1062.33002 MR 1972780 · Zbl 1062.33002
[34] Knudsen, F. F., Mumford, D.: The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”. Math. Scand.39, 19-55 (1976)Zbl 0343.14008 MR 0437541 · Zbl 0343.14008
[35] K¨ohler, K., Roessler, D.: A fixed point formula of Lefschetz type in Arakelov geometry. I. Statement and proof. Invent. Math.145, 333-396 (2001)Zbl 0999.14002 MR 1872550 · Zbl 0999.14002
[36] K¨uhn, U.: Generalized arithmetic intersection numbers. J. Reine Angew. Math.534, 209-236 (2001)Zbl 1084.14028 MR 1831639 · Zbl 1084.14028
[37] Ma, X.: Orbifolds and analytic torsions. Trans. Amer. Math. Soc.357, 2205-2233 (2005) Zbl 1065.58024 MR 2140438 · Zbl 1065.58024
[38] M¨uller, W.: Relative zeta functions, relative determinants and scattering theory. Comm. Math. Phys.192, 309-347 (1998)Zbl 0947.58025 MR 1617554 · Zbl 0947.58025
[39] Mumford, D.: Stability of projective varieties. Enseign. Math. (2)23, 39-110 (1977) Zbl 0363.14003 MR 0450272 · Zbl 0363.14003
[40] Olver, F. W. J.: Asymptotics and Special Functions. AKP Classics, A K Peters, Wellesley, MA (1997)Zbl 0982.41018 MR 1429619 · Zbl 0982.41018
[41] Osgood, B., Phillips, R., Sarnak, P.: Extremals of determinants of Laplacians. J. Funct. Anal. 80, 148-211 (1988)Zbl 0653.53022 MR 0960228 · Zbl 0653.53022
[42] Saharian, A. A.: A summation formula over the zeros of the associated Legendre function with a physical application. J. Phys. A41, no. 41, art. 415203, 17 pp. (2008)Zbl 1155.33003 MR 2439244 · Zbl 1155.33003
[43] Saito, T.: Conductor, discriminant, and the Noether formula of arithmetic surfaces. Duke Math. J.57, 151-173 (1988)Zbl 0657.14017 MR 0952229 · Zbl 0657.14017
[44] Saito, T., Terasoma, T.: Determinant of period integrals. J. Amer. Math. Soc.10, 865-937 (1997)Zbl 0956.14005 MR 1444751 · Zbl 0956.14005
[45] Sarnak, P.: Class numbers of indefinite binary quadratic forms. J. Number Theory15, 229-247 (1982)Zbl 0499.10021 MR 0675187 · Zbl 0499.10021
[46] Sarnak, P.: Determinants of Laplacians. Comm. Math. Phys.110, 113-120 (1987) Zbl 0618.10023 MR 0885573 · Zbl 0618.10023
[47] Schumacher, G., Trapani, S.: Weil-Petersson geometry for families of hyperbolic conical Riemann surfaces. Michigan Math. J.60, 3-33 (2011)Zbl 1223.30014 MR 2785861 · Zbl 1223.30014
[48] Seeley, R. T.: Complex powers of an elliptic operator. In: Singular Integrals (Chicago, IL, 1966), Proc. Sympos. Pure Math. 10, Amer. Math. Soc., Providence, RI, 288-307 (1967) Zbl 0159.15504 MR 0237943 · Zbl 0159.15504
[49] Soul´e, C.: G´eom´etrie d’Arakelov des surfaces arithm´etiques. In: S´eminaire Bourbaki, Vol. 1988/89, exp. 713, Ast´erisque177-178, 327-343 (1989)Zbl 0766.14015 MR 1040579 · Zbl 0766.14015
[50] Spreafico, M.: Zeta function and regularized determinant on a disc and on a cone. J. Geom. Phys.54, 355-371 (2005)Zbl 1072.58025 MR 2139088 · Zbl 1072.58025
[51] Takhtajan, L. A., Zograf, P.: Local index theorem for orbifold Riemann surfaces. Lett. Math. Phys.109, 1119-1143 (2019)Zbl 1417.58024 MR 3946487 · Zbl 1417.58024
[52] Takhtajan, L. A., Zograf, P. G.: A local index theorem for families of∂-operators on punctured Riemann surfaces and a new K¨ahler metric on their moduli spaces. Comm. Math. Phys.137, 399-426 (1991)Zbl 0725.58043 MR 1101693 · Zbl 0725.58043
[53] Wagner, E.: Asymptotische Entwicklungen der Gaußschen hypergeometrischen Funktion f¨ur unbeschr¨ankte Parameter. Z. Anal. Anwendungen9, 351-360 (1990)Zbl 0732.33005 MR 1119536 · Zbl 0732.33005
[54] Weng, L.:-admissible theory. II. Deligne pairings over moduli spaces of punctured Riemann surfaces. Math. Ann.320, 239-283 (2001)Zbl 1036.14013 MR 1839763 · Zbl 1036.14013
[55] Wolpert, S. A.: Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces. Comm. Math. Phys.112, 283-315 (1987)Zbl 0629.58029 MR 0905169 · Zbl 0629.58029
[56] Wolpert, S. A.: The hyperbolic metric and the geometry of the universal curve. J. Differential Geom.31, 417-472 (1990)Zbl 0698.53002 MR 1037410 · Zbl 0698.53002
[57] Wolpert, S.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.