×

Scaling limits and fluctuations for random growth under capacity rescaling. (English. French summary) Zbl 1472.60045

Summary: We evaluate a strongly regularised version of the Hastings-Levitov model \(\mathrm{HL}(\alpha)\) for \(0\leq\alpha<2\). Previous results have concentrated on the small-particle limit where the size of the attaching particle approaches zero in the limit. However, we consider the case where we rescale the whole cluster by its capacity before taking limits, whilst keeping the particle size fixed. We first consider the case where \(\alpha=0\) and show that under capacity rescaling, the limiting structure of the cluster is not a disk, unlike in the small-particle limit. Then we consider the case where \(0<\alpha<2\) and show that under the same rescaling the cluster approaches a disk. We also evaluate the fluctuations and show that, when represented as a holomorphic function, they behave like a Gaussian field dependent on \(\alpha\). Furthermore, this field becomes degenerate as \(\alpha\) approaches 0 and 2, suggesting the existence of phase transitions at these values.

MSC:

60F05 Central limit and other weak theorems
30C35 General theory of conformal mappings
60D05 Geometric probability and stochastic geometry
82C24 Interface problems; diffusion-limited aggregation in time-dependent statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] P. Billingsley. Convergence of Probability Measures. John Wiley & Sons, New York, 1999. · Zbl 0944.60003 · doi:10.1002/9780470316962
[2] R. Durrett. Probability: Theory and Examples, Fifth edition. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2019. · Zbl 1440.60001 · doi:10.1017/9781108591034
[3] M. Eden. A two-dimensional growth process. In Proc. 4th Berkeley 223-239. Sympos. Math. Statist. and Prob. IV. Univ. California Press, Berkeley, CA, 1961. · Zbl 0104.13801
[4] D. A. Freedman. On tail probabilities for martingales. Ann. Probab. 3 (1) (1975) 100-118. · Zbl 0313.60037 · doi:10.1214/aop/1176996452
[5] M. Hastings and L. Levitov. Laplacian growth as one-dimensional turbulence. Phys. D, Nonlinear Phenom. 116 (1998) 244-252. · Zbl 0962.76542
[6] F. Johansson Viklund, A. Sola and A. Turner. Small-particle limits in a regularized Laplacian random growth model. Comm. Math. Phys. 334 (2015) 331-366. · Zbl 1310.82019 · doi:10.1007/s00220-014-2158-y
[7] D. McLeish. Dependent central limit theorems and invariance principles. Ann. Probab. 2 (4) (1974) 620-628. · Zbl 0287.60025 · doi:10.1214/aop/1176996608
[8] J. Norris, V. Silvestri and A. Turner. Scaling limits for planar aggregation with subcritical fluctuations, 2019. arXiv preprint. Available at arXiv:1902.01376.
[9] J. Norris and A. Turner. Hastings-Levitov aggregation in the small-particle limit. Comm. Math. Phys. 316 (2012) 809-841. · Zbl 1259.82026 · doi:10.1007/s00220-012-1552-6
[10] C. Pommerenke. Univalent Functions. Vandenhoeck & Ruprecht, Gottingen, 1975. · Zbl 0298.30014
[11] S. Rohde and M. Zinsmeister. Some remarks on Laplacian growth. Topology Appl. 152 (2005) 26-43. · Zbl 1077.60040 · doi:10.1016/j.topol.2004.08.013
[12] L. M. Sander and T. A. Witten. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47 (1983) 1400-1403. · doi:10.1103/physrevb.27.5686
[13] V. Silvestri. Fluctuation results for Hastings-Levitov planar growth. Probab. Theory Related Fields 167 (2017) 417-460. · Zbl 1360.60074 · doi:10.1007/s00440-015-0688-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.