×

Renormalization group approach to a class of singularly perturbed delay differential equations. (English) Zbl 1473.34029

Summary: In this paper, we present a systematic renormalization group method to investigate a class of singularly perturbed delay differential equations. The uniformly valid approximate solution can be obtained, and we give a rigorous proof of the error estimate of the approximate solution. In addition, some numerical comparisons between the exact solution, the result by the averaging method and our result are given for two examples.

MSC:

34C14 Symmetries, invariants of ordinary differential equations
34M25 Formal solutions and transform techniques for ordinary differential equations in the complex domain
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lange, C. G.; Miura, R. M., Singular perturbation analysis of boundary-value problems for differential-difference equations. V. Small shifts with layer behavior, SIAM J Appl Math, 54, 249-272 (1994) · Zbl 0796.34049
[2] Derstine, M. W.; Gibbs, H. M.; Hopf, F. A.; Kaplan, D. L., Bifurcation gap in a hybrid optical system, Phys Rev A, 26, 3720-3722 (1982)
[3] Mackey, M. C.; Glass, L., Oscillations and chaos in physiological control systems, Science, 197, 287-289 (1977) · Zbl 1383.92036
[4] Longtin, A.; Milton, J. G., Complex oscillations in the human pupil light reflex with “mixed” and delayed feedback, Math Biosci, 90, 183-199 (1988)
[5] Lange, C. G.; Miura, R. M., Singular perturbation analysis of boundary-value problems for differential difference equations, SIAM J Appl Math, 42, 502-531 (1982) · Zbl 0515.34058
[6] Lange, C. G.; Miura, R. M., Singular perturbation analysis of boundary-value problems for differential difference equations. VI. Small shifts with rapid oscillations, SIAM J Appl Math, 54, 273-283 (1994) · Zbl 0796.34050
[7] Wang, A. F.; Ni, M. K., The interior layer for a nonlinear singularly perturbed differential-difference equation, Acta Math Sci Ser B, 32, 695-709 (2012) · Zbl 1265.34276
[8] Wang, A. F.; Xu, M.; Ni, M. K., The impulsive solution for a semi-linear singularly perturbed differential-difference equation, Acta Math Appl Sin Engl Ser, 32, 333-342 (2016) · Zbl 1342.34099
[9] Ni, M. K.; Nefedov, N. N.; Levashova, N. T., Asymptotics of the solution of a singularly perturbed second-order delay differential equation, Differ Equ, 56, 290-303 (2020) · Zbl 1445.34111
[10] Zhao, Y.; Xiao, A.; Li, L.; Zhang, C., Variational iteration method for singular perturbation initial value problems with delays, Math Probl Eng (2014) · Zbl 1407.65088
[11] Hu, H. Y.; Wang, Z. H., Singular perturbation methods for nonlinear dynamic systems with time delays, Chaos Solitons Fractals, 40, 13-27 (2009) · Zbl 1197.34113
[12] Lehman, B.; Weibel, S. P., Fundamental theorems of averaging for functional differential equations, J Differential Equations, 152, 160-190 (1999) · Zbl 0930.34044
[13] Chen, L. Y.; Goldenfeld, N.; Oono, Y., Renormalization group theory for global asymptotic analysis, Phys Rev Lett, 73, 1311-1315 (1994) · Zbl 1020.81729
[14] Chen, L. Y.; Goldenfeld, N.; Oono, Y., Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory, Phys Rev E, 54, 376-394 (1996)
[15] Kunihiro, T., The renormalization-group method applied to asymptotic analysis of vector fields, Progr Theoret Phys, 97, 179-200 (1997)
[16] Chiba, H., \( C^1\) Approximation of vector fields based on the renormalization group method, SIAM J Appl Dym Syst, 7, 895-932 (2008) · Zbl 1159.37014
[17] Chiba, H., Extension and unification of singular perturbation methods for ODEs based on the renormalization group method, SIAM J Appl Dyn Syst, 8, 1066-1115 (2009) · Zbl 1179.34035
[18] Chiba, H., Approximation of center manifolds on the renormalization group method, J Math Phys, 49, Article 102703 pp. (2008) · Zbl 1152.81375
[19] Lee DeVille, R. E.; Harkin, A.; Holzer, M.; Josić, K.; Kaper, T., Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations, Physica D, 237, 1029-1052 (2008) · Zbl 1145.34331
[20] Dutta, A.; Das, D.; Banerjee, D.; Bhattacharjee, J. K., Estimating the boundaries of a limit cycle in a 2D dynamical system using renormalization group, Commun Nonlinear Sci Numer Simul, 57, 47-57 (2018) · Zbl 1510.34047
[21] Goto, S., Renormalization reductions for systems with delay, Progr Theoret Phys, 118, 211-227 (2007) · Zbl 1148.37044
[22] Wu, Y. N.; Xu, X., Renormalization group methods for a Mathieu equation with delayed feedback, Theor Appl Mech Lett, Article 063007 pp. (2013)
[23] Zhou, R.; Shi, S. Y.; Li, W. L., Renormalization group approach to boundary layer problems, Commun Nonlinear Sci Numer Simul, 71, 220-230 (2019) · Zbl 1464.34082
[24] Sanders, J. A.; Verhulst, F.; Murdock, J., Averaging methods in nonlinear dynamical systems (1985), Springer: Springer New York · Zbl 0586.34040
[25] Budak, E.; Altintas, Y., Analytical prediction of chatter stability in milling-Part I: General formulation, J Dyn Syst Meas Control, 120, 22-30 (1998)
[26] Insperger, T.; Stepan, G., Remote control of periodic robot motion (2000), Springer: Springer Vienna · Zbl 1012.70518
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.