Kononenko, Larisa Ivanovna Direct and inverse problems for a singular system with slow and fast variables in chemical kinetics. (Russian. English summary) Zbl 1474.34314 Vladikavkaz. Mat. Zh. 17, No. 1, 39-46 (2015). Summary: Direct and inverse problems for singular systems with small parameter are stated, which describe catalytic reactions in chemical kinetics. The solution of the direct problem is based on the method of integral manifolds. The inverse problem reduces to finding the coefficients of the polynomial in the right-hand part of the slow equation according to the solution given on the slow surface of the system. The above arguments make it possible to obtain existence and uniqueness conditions for the coefficients in the right-hand part of the slow subsystem of the degenerate system. Cited in 2 Documents MSC: 34C60 Qualitative investigation and simulation of ordinary differential equation models 34E15 Singular perturbations for ordinary differential equations 92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.) 34C45 Invariant manifolds for ordinary differential equations 34A55 Inverse problems involving ordinary differential equations Keywords:mathematical modeling; singularity perturbed system; integral manifold; slow surface; inverse problem PDF BibTeX XML Cite \textit{L. I. Kononenko}, Vladikavkaz. Mat. Zh. 17, No. 1, 39--46 (2015; Zbl 1474.34314) Full Text: MNR References: [1] Mitropolskii Yu. A., Lykova O. B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1963 [2] Vasileva A. V., Butuzov V. F., Singulyarno vozmuschennye uravneniya v kriticheskikh sluchayakh, Izd-vo MGU, M., 1978 [3] Goldshtein V. M., Sobolev V. A., Kachestvennyi analiz singulyarno vozmuschennykh sistem, Izd-vo In-ta matematiki SO AN SSSR, Novosibirsk, 1988 [4] Tikhonov A. N., “Sistemy differentsialnykh uravnenii, soderzhaschie malye parametry pri proizvodnykh”, Mat. sb., 31(73):3 (1952), 575-586 · Zbl 0048.07101 [5] Tikhonov A. N., “O zavisimosti reshenii differntsialnykh uravnenii ot malogo parametra”, Mat. sb., 22(64):2 (1948), 193-204 · Zbl 0037.34401 [6] Goldshtein V. M., Kononenko L. I., Lazman M.Ż., Sobolev V. A., Yablonskii G. S., “Kachestvennyi analiz dinamicheskikh svoistv kataliticheskogo izotermicheskogo reaktora idealnogo smesheniya”, Matematicheskie problemy khimicheskoi kinetiki, Nauka, Novosibirsk, 1989, 176-204 [7] Kononenko L. I., “O gladkosti medlennoi poverkhnosti singulyarno vozmuschennykh sistem”, Sib. zhurn. industr. matematiki, 5:2(10) (2002), 109-125 · Zbl 1024.34046 [8] Kononenko L. I., Volokitin E. P., “Parametrizatsiya i kachestvenyi analiz singulyarnoi sistemy v matematicheskoi modeli reaktsii kataliticheskogo okisleniya”, Sib. zhurn. industr. matematiki, 15:1(49) (2012), 44-52 [9] Voropaeva N. V., Sobolev V. A., Geometricheskaya dekompozitsiya singulyarno vozmuschennykh sistem, Fizmatlit, M., 2009 [10] Romanov V. G., “Obratnye zadachi dlya giperbolicheskikh sistem”, Vychislitelnye metody v matematicheskoi fizike, geofizike i optimalnom upravlenii, Nauka, Novosibirsk, 1978, 128-142 [11] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980, 286 pp. [12] Anikonov Yu. E., “Neskolko voprosov teorii obratnykh zadach dlya kineticheskikh uravnenii”, Obratnye zadachi matematicheskoi fiziki, Novosibirsk, 1985, 28-41 · Zbl 0595.35108 [13] Alekseev A. S., “Nekotorye obratnye zadachi teorii rasprostraneniya voln 1, 2”, Izv. AN SSSR. Ser. geofizika, 1962, no. 11, 1514-1531 [14] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sibirskoe nauchnoe izd-vo, Novosibirsk, 2009, 456 pp. [15] Golubyatnikov V. P., “Obratnaya zadacha dlya uravneniya Gamiltona-Yakobi na zamknutom mnogoobrazii”, Sib. mat. zhurn., 38:2 (1997), 276-279 [16] Kozhanov A. I., “Nelineinye nagruzhennye uravneniya i obratnye zadachi”, Zhurn. vychisl. matematiki i mat. fiziki, 44:4 (2004), 694-716 · Zbl 1114.35148 [17] Gainova I. A., Fadeev S. I., Elokhin V. I., Boronin A. I., “Reaktsiya okisleniya CO na polikristallicheskoi folge iridiya. Modelirovanie kinetiki poverkhnostnykh protsessov”, Mezhdunar. konf. po vychislitelnoi matematike, Trudy konferentsii. Chast I, Novosibirsk, 2004, 449-454 [18] Kononenko L. I., “Integralnye mnogoobraziya v matematicheskoi modeli reaktsii kataliticheskogo okisleniya”, Izv. RAEN. Ser. MMMIU, 1:4 (1997), 53-59 · Zbl 0917.34039 [19] Kononenko L. I., “Medlennye poverkhnosti v zadachakh khimicheskoi kinetiki”, Mat. zametki YaGU, 19:2 (2012), 49-67 · Zbl 1289.34120 [20] Chumakov G. A., Chumakova N. A., “Relaxation oscillations in a kinetic model of catalytic hydrogen oxidation involving a chase on canards”, Chem. Eng. J., 91:2-3 (2003), 151-158 [21] Kononenko L. I., “Relaksatsii v singulyarno vozmuschennykh sistemakh na ploskosti”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 9:4 (2009), 45-50 · Zbl 1249.34159 [22] Sobolev V. A., Schepakina E. A., “Integralnye poverkhnosti so smenoi ustoichivosti i traektorii-utki”, Izv. RAEN. Ser. MMMIU, 1:3 (1997), 176-187 [23] Bobkova A. S., Kolesov A. Yu., Rozov N. Kh., “Problema “vyzhivaniya utok” v trekhmernykh singulyarno vozmuschennykh sistemakh s dvumya medlennymi peremennymi”, Mat. zametki, 71:6 (2002), 818-831 · Zbl 1087.34034 [24] Reshetnyak Yu. G., Kurs matematicheskogo analiza. Ch. 1. Kn. 2: Integralnoe ischislenie funktsii odnoi peremennoi. Differentsialnoe ischislenie funktsii mnogikh peremennykh, Izd-vo Instituta matematiki im. S. L. Soboleva SO RAN, Novosibirsk, 1999, 512 pp. [25] Ermakova A., Metody makrokinetiki, primenyaemye pri matematicheskom modelirovanii khimicheskikh protsessov i reaktorov, Institut kataliza SO RAN im. G. K. Boreskova, Novosibirsk, 2001, 188 pp. [26] Godunov S. K., Sovremennye aspekty lineinoi algebry, Nauchnaya kniga, Novosibirsk, 1997, 388 pp. [27] Godunov S. K., Lektsii po sovremennym aspektam lineinoi algebry, Nauchnaya kniga, Novosibirsk, 2002, 216 pp. [28] Romanov V. G., Slinyucheva L. I., “Obratnaya zadacha dlya lineinykh giperbolicheskikh sistem pervogo poryadka”, Matem. problemy geofiziki, 3, Izdatelstvo VTs SO AN SSSR, Novosibirsk, 1972, 187-215 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.