Mamedov, Il’gar Gurbat On a nonclassical interpretation of the four-dimensional Goursat problem for a hyberbolic equation. (Russian. English summary) Zbl 1474.35455 Vladikavkaz. Mat. Zh. 17, No. 4, 59-66 (2015). Summary: A homeomorphism between certain pairs of Banach spaces is revealed in the study of the four-dimensional Goursat problem for a differential equation with leading partial derivative of the sixth order \(D_1D_2D_3^2D_4^2\) with discontinuous coefficients \((L_p\)-coefficients) by reducing this problem to an equivalent integral equation. MSC: 35L35 Initial-boundary value problems for higher-order hyperbolic equations Keywords:hyperbolic equation; four-dimensional Goursat problem; equations with discontinuous coefficients × Cite Format Result Cite Review PDF Full Text: MNR References: [1] Zhegalov V. I., Sevastyanov V. A., “Zadacha Gursa v chetyrekhmernom prostranstve”, Dif. uravneniya, 32:10 (1996), 1429-1430 · Zbl 0896.35031 [2] Zhegalov V. I., Mironov A. N., Differentsialnye uravneniya so starshimi chastnymi proizvodnymi, Kazanskoe mat. obschestvo, Kazan, 2001, 226 pp. [3] Mironov A. N., “K zadache Koshi v chetyrekhmernom prostranstve”, Dif. uravneniya, 40:6 (2004), 844-847 · Zbl 1076.35032 [4] Mironov A. N., “K metodu Rimana resheniya odnoi smeshannoi zadachi”, Vestn. Sam. gos. tekhn. un-ta. Ser. fiz.-mat. nauki, 2007, no. 2(15), 27-32 · Zbl 1449.35176 · doi:10.14498/vsgtu526 [5] Koscheeva O. A., “O postroenii funktsii Rimana dlya uravneniya Bianki v \(n\)-mernom prostranstve”, Izv. vuzov. Matematika, 2008, no. 9, 40-46 · Zbl 1179.35087 [6] Utkina E. A., “Ob odnoi kraevoi zadache so smescheniyami v chetyrekhmernom prostranstve”, Izv. vuzov. Matematika, 2009, no. 4, 50-55 · Zbl 1298.35036 [7] Mironov A. N., “O postroenii funktsii Rimana dlya odnogo uravneniya so starshei chastnoi proizvodnoi pyatogo poryadka”, Dif. uravneniya, 46:2 (2010), 266-272 · Zbl 1193.35005 [8] Dzhokhadze O. M., “O trekhmernoi obobschennoi zadache Gursa dlya uravneniya tretego poryadka i svyazannye s nei obschie dvumernye integralnye uravneniya Volterry pervogo roda”, Dif. uravneniya, 42:3 (2006), 385-394 · Zbl 1131.35359 [9] Midodashvili B., “Generalized Goursat problem for a spatial fourth order hyperbolic equation with dominated low terms”, Proceedings of A. Razmadze Math. Institute, 138 (2005), 43-54 · Zbl 1128.35366 [10] Berezin A. V., Vorontsov A. S., Markov M. B., Plyuschenkov B. D., “O vyvode i reshenii uravnenii Maksvella v zadachakh s zadannym volnovym frontom”, Mat. modelirovanie, 18:4 (2006), 43-60 · Zbl 1125.78304 [11] Zhegalov V. I., Utkina E. A., “Ob odnom psevdoparabolicheskom uravnenii tretego poryadka”, Izv. vuzov. Matematika, 1999, no. 10, 73-76 · Zbl 0990.35083 [12] Mamedov I. G., “Fundamentalnoe reshenie zadachi Koshi, svyazannoi s psevdoparabolicheskim uravneniem chetvertogo poryadka”, Zhurn. vychislitelnoi matematiki i mat. fiziki, 49:1 (2009), 99-110 · Zbl 1224.35233 [13] Kozhanov A. I., “Ob odnoi nelokalnoi kraevoi zadache s peremennymi koeffitsientami dlya uravnenii teploprovodnosti i Allera”, Dif. uravneniya, 40:6 (2004), 763-764 [14] Vodakhova V. A., “Kraevaya zadacha s nelokalnym usloviem A. M. Nakhusheva dlya odnogo psevdoparabolicheskogo uravneniya vlagoperenosa”, Dif. uravneniya, 18:2 (1982), 280-285 · Zbl 0486.35045 [15] Shkhanukov M. Kh., “O nekotorykh kraevykh zadachakh dlya uravneniya tretego poryadka, voznikayuschikh pri modelirovanii filtratsii zhidkosti v poristykh sredakh”, Dif. uravneniya, 18:4 (1982), 689-699 · Zbl 0559.76088 [16] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995, 304 pp. · Zbl 0991.35500 [17] Mamedov I. G., “Usloviya optimalnosti nekotorykh protsessov, opisyvaemykh psevdoparabolicheskim uravneniem pri nelokalnykh kraevykh usloviyakh”, Mat. i kompyuternoe modelirovanie. Ser. fiz.-mat. nauki, 2008, no. 1, 133-141 [18] Chernov A. V., “O totalnom sokhranenii globalnoi razreshimosti zadachi Gursa dlya upravlyaemogo polulineinogo psevdoparabolicheskogo uravneniya”, Vladikavk. mat. zhurn., 16:3 (2014), 55-63 · Zbl 1330.35224 [19] Mamedov I. G., “Formula integrirovaniya po chastyam neklassicheskogo tipa pri issledovanii zadachi Gursa dlya odnogo psevdoparabolicheskogo uravneniya”, Vladikavk. mat. zhurn., 13:4 (2011), 40-51 · Zbl 1326.35180 [20] Mamedov I. G., “Nelokalnaya kombinirovannaya zadacha tipa Bitsadze-Samarskogo i Samarskogo-Ionkina dlya sistemy psevdoparabolicheskikh uravnenii”, Vladikavk. mat. zhurn., 16:1 (2014), 30-41 · Zbl 1330.35226 [21] Mamedov I. G., “O neklassicheskoi traktovke zadachi Dirikhle dlya odnogo psevdoparabolicheskogo uravneniya chetvertogo poryadka”, Dif. uravneniya, 50:3 (2014), 417-420 · Zbl 1295.35282 · doi:10.1134/S0374064114030169 [22] Akhiev S. S., “Fundamentalnye resheniya nekotorykh lokalnykh i nelokalnykh kraevykh zadach i ikh predstavleniya”, Dokl. AN SSSR, 271:2 (1983), 265-269 · Zbl 0539.35009 [23] Akhiev S. S., “Funktsiya Rimana uravneniya s dominiruyuschei smeshannoi proizvodnoi proizvolnogo poryadka”, Dokl. AN SSSR, 283:5 (1985), 783-787 · Zbl 0615.35016 [24] Mamedov I. G., “Ob odnoi zadache Gursa v prostranstve Soboleva”, Izv. vuzov. Matematika, 2011, no. 2, 54-64 · Zbl 1270.35329 [25] Mamedov I. G., “Fundamentalnoe reshenie nachalno-kraevoi zadachi dlya psevdoparabolicheskogo uravneniya chetvertogo poryadka s negladkimi koeffitsientami”, Vladikavk. mat. zhurn., 12:1 (2010), 17-32 · Zbl 1213.35276 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.