×

Interpolation of functions by the Whittaker sums and their modifications: conditions for uniform convergence. (Russian. English summary) Zbl 1474.41007

Summary: We consider truncated Whittaker-Kotel’nikov-Shannon operators also known as sinc-operators. Conditions on continuous functions \(f\) that guarantee uniform convergence of sinc-operators to such functions are obtained. It is shown that if a function is absolutely continuous, satisfies Dini-Lipschitz condition and vanishes at the end of the segment \([0,\pi]\), then sinc-operators converge uniformly to this function. In the case when \(f(0)\) or \(f(\pi)\) is not zero, sinc-operators lose the property of uniform convergence. For example, it is well known that sinc-operators have no uniform convergence to function identically equal to 1. In connection with this we introduce modified sinc-operators that possess a uniform convergence property for arbitrary absolutely continuous function, satisfying Dini-Lipschitz condition.

MSC:

41A05 Interpolation in approximation theory
41A45 Approximation by arbitrary linear expressions
42A10 Trigonometric approximation
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
Full Text: MNR

References:

[1] Whittaker E. T., “On the functions which are represented by expansions of the interpolation theory”, #Proc. Roy. Soc. Edinburgh, #35 (1915), 181-194 · doi:10.1017/S0370164600017806
[2] Kotelnikov V. A., “O propusknoi sposobnosti «efira» i provoloki v elektrosvyazi”, #Vsesoyuznyi energeticheskii kommitet. Materialy k I Vsesoyuznomu s’ezdu po voprosam rekonstruktsii dela svyazi i razvitiya slabotochnoi promyshlennosti. Po radiosektsii, Upravlenie svyazi RKKA, M., 1933, 1-19
[3] Shannon C. E., “A mathematical theory of communication”, #Bell System Tech. J., #27 (1948), 379-423 · Zbl 1154.94303 · doi:10.1002/j.1538-7305.1948.tb01338.x
[4] Schoenberg I. J., “Cardinal interpolation and spline functions”, #J. Approx. Theory, #2 (1969), 167-206 · Zbl 0202.34803 · doi:10.1016/0021-9045(69)90040-9
[5] McNamee J., Stenger F., Whitney E. L., “Whittaker”s cardinal function in retrospect”, #Mathematics of Computation, #25:113 (1971), 141-154 · Zbl 0216.48502
[6] Stenger F., “An analytic function which is an approximate characteristic function”, #SIAM J. Appl. Math., #12 (1975), 239-254 · Zbl 0274.65010
[7] Stenger F., “Approximations via the Whittaker cardinal function”, #J. Approx. Theory, #17 (1976), 222-240 · Zbl 0332.41013 · doi:10.1016/0021-9045(76)90086-1
[8] Higgins J. R., “Five short stories about the cardinal series”, #Bull. Amer. Math. Soc., #12 (1985), 45-89 · Zbl 0562.42002 · doi:10.1090/S0273-0979-1985-15293-0
[9] Lund J., Kenneth L. B., #Sinc Methods for Quadrature and Differential Equations, J. Soc. Ind. Appl. Math., Philadelphia, 1992, 304 pp. · Zbl 0753.65081
[10] Stenger F., #Numerical Metods Based on Sinc and Analytic Functions, Springer-Verlag, N. Y., 1993, 565 pp. · Zbl 0803.65141
[11] Young R. M., #An Introduction to Nonharmonic Fourier Series, Revised first edition, Academic Press. A Harcourt Science and Technology Company, San Diego, 2001, 235 pp. · Zbl 0981.42001
[12] Zhuk A. S., Zhuk V. V., “Nekotorye ortogonalnosti v teorii priblizheniya”, Zap. nauchn. semin. POMI, #314, 2004, 83-123 · Zbl 1127.42005
[13] Antuna A., Guirao L. G., Lopez M. A., “Shannon-Whittaker-Kotel”nikov’s theorem generalized”, #MATCH Commun. Math. Comput. Chem., #73 (2015), 385-396 · Zbl 1436.94023
[14] Trynin A. Yu., “Ob approksimatsii analiticheskikh funktsii operatorami Lagranzha-Shturma-Liuvillya”, #Sovremennye problemy teorii funktsii i ikh prilozheniya, Tez. dokl. 10 Saratovskoi zimnei shk. (27 yanvarya-2 fevralya 2000 g.), Izd-vo Sarat. un-ta, Saratov, 2000, 140-141
[15] Trynin A. Yu., “Ob otsenke approksimatsii analiticheskikh funktsii interpolyatsionnym operatorom po sinkam”, Matematika. Mekhanika, #7, Izd-vo Sarat. un-ta, Saratov, 2005, 124-127
[16] Sklyarov V. P., “O nailuchshei ravnomernoi sinc approksimatsii na konechnom otrezke”, #Sovremennye problemy teorii funktsii i ikh prilozheniya, Tez. dokl. 13 Saratovskoi zimnei shk. (27 yanvarya-3 fevralya 2006 g), Izd-vo Sarat. un-ta, Saratov, 2006, 161
[17] Trynin A. Yu., Sklyarov V. P., “Error of sinc approximation of analytic functions on an interval”, #Sampling Theory in Signal and Image Processing, #7:3 (2008), 263-270 · Zbl 1182.65020
[18] Sklyarov V. P., “On the best uniform sinc-approximation on a finite interval”, #East J. Approx., #14:2 (2008), 183-192 · Zbl 1219.41022
[19] Trynin A. Yu., “Otsenki funktsii Lebega i formula Nevai dlya sinc-priblizhenii nepreryvnykh funktsii na otrezke”, #Sib. mat. zhurn., #48:5 (2007), 1155-1166 · Zbl 1164.41307
[20] Trynin A. Yu., “Kriterii ravnomernoi skhodimosti sinc-priblizhenii na otrezke”, #Izv. vuzov. Matematika, 2008, no. 6, 66-78
[21] Privalov A. A., “O ravnomernoi skhodimosti interpolyatsionnykh protsessov Lagranzha”, #Mat. zametki, #39:6 (1986), 228-243
[22] Trynin A. Yu., “Obobschenie teoremy otschetov Uittekera-Kotelnikova-Shennona dlya nepreryvnykh funktsii na otrezke”, #Mat. sb., #200:11 (2009), 61-108 · Zbl 1194.41012 · doi:10.4213/sm4502
[23] Sharapudinov I. I., Umakhanov A. Ya., “Interpolyatsiya funktsii summami Uittekera i ikh modifikatsiyami: usloviya ravnomernoi skhodimosti”, #Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 18-i mezhdunar. Saratovskoi zimnei shk. (Saratov, 2016), 332-334
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.