A note on some operators acting on central Morrey spaces. (English) Zbl 1474.42097

Summary: We prove boundedness of maximal commutators and convolution operators with generalized Poisson kernels on central Morrey spaces.


42B35 Function spaces arising in harmonic analysis
26D10 Inequalities involving derivatives and differential and integral operators
44A35 Convolution as an integral transform
Full Text: EMIS Link Link


[1] J. Alvarez, M. Guzm´an-Partida, J. Lakey,Spaces of boundedλ-central mean oscillation, Morrey spaces, andλ-central Carleson measures, Collect. Math.51(2000), 1-47. · Zbl 0948.42013
[2] J. Alvarez, M. Guzm´an-Partida, S. P´erez-Esteva,Harmonic extensions of distributions, Math. Nachr.280(2007), 1443-1466. · Zbl 1138.46032
[3] Y. Chen, K. Lau,Some new classes of Hardy spaces, J. Funct. Anal.84(1989), 255-278. · Zbl 0677.30030
[4] J. Garc´ıa-Cuerva,Hardy spaces and Beurling algebras, J. London Math. Soc.39(1989), 499- 513. · Zbl 0681.42014
[5] J. Garc´ıa-Cuerva, E. Harboure, C. Segovia, J. L. Torrea,Weighted norm inequalities for commutators of strongly singular integrals, Indiana Univ. Math. J.40(1991), 1397-1420. · Zbl 0765.42012
[6] J. Garc´ıa-Cuerva, J. L. Rubio de Francia,Weighted norm inequalities and related topics, North-Holland, Amsterdam, 1985.
[7] V. S. Guliyev,Generalized weighted Morrey spaces and higher order commutators of sublinear operators, Eurasian Math. J.3(2012), 33-61. · Zbl 1271.42019
[8] V. S. Guliyev, S. A. Aliyev,Boundedness of the parametric Marcinkiewicz integral operator and its commutators on generalized Morrey spaces, Georgian Math. J.19(2012), 195-208.
[9] Y. Komori-Furuya, K. Matsuoka, E. Nakai and Y. Sawano,Integral operators onBσ-MorreyCampanato spaces, Rev. Mat. Complut.26(2013), 1-32. · Zbl 1273.42023
[10] Y. Komori, T. Mizuhara,Notes on commutators and Morrey spaces, Hokkaido Math. J.32 (2003), 345-353. · Zbl 1044.42011
[11] R. Long,The spaces generated by blocks, Scientia Sinica Ser. A27(1984), 16-26. · Zbl 0533.46014
[12] S. Lu, D. Yang,The centralBM Ospaces and Littlewood-Paley operators, Approx. Theory Appl.11(1995), 72-94.
[13] K. Matsuoka,On some weighted Herz spaces and the Hardy-Littlewood maximal operator, Proc. Int. Symp. Banach and Function Spaces II, Kitakyushu, Japan (2006), 375-384. · Zbl 1243.42033
[14] C. Morrey,On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc.43(1938), 126-166. · Zbl 0018.40501
[15] J. Wittsten,Generalized axially symmetric potentials with distributional boundary values, Bull. Sci. Math.139(2015), 892-922. · Zbl 1330.31002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.