Sultanakhmedov, Murad Salikhovich Approximative properties of the Chebyshev wavelet series of the second kind. (Russian. English summary) Zbl 1474.42146 Vladikavkaz. Mat. Zh. 17, No. 3, 56-64 (2015). Summary: The wavelets and scaling functions based on Chebyshev polynomials and their zeros are introduced. The constructed system of functions is proved to be orthogonal. Using this system, an orthonormal basis in the space of square-integrable functions is built. Approximative properties of partial sums of corresponding wavelet series are investigated. Cited in 3 Documents MSC: 42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems 42A10 Trigonometric approximation 42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.) 41A99 Approximations and expansions Keywords:polynomial wavelets; Chebyshev polynomials of second kind; orthogonality; Christoffel-Darboux formula; function approximation; wavelet series × Cite Format Result Cite Review PDF Full Text: MNR References: [1] Chui C. K., Mhaskar H. N., “On Trigonometric wavelets”, Constructive Approximation, 9 (1993), 167-190 · Zbl 0780.42020 · doi:10.1007/BF01198002 [2] Kilgore T., Prestin J., “Polynomial wavelets on an interval”, Constructive Approximation, 12:1 (1996), 1-18 · Zbl 0848.41004 · doi:10.1007/BF02432856 [3] Davis P. J., Interpolation and Approximation, Dover Publ. Inc., N.Y., 1973 [4] Fischer B., Prestin J., “Wavelet based on orthogonal polynomials”, Math. Comp., 66 (1997), 1593-1618 · Zbl 0896.42020 · doi:10.1090/S0025-5718-97-00876-4 [5] Fischer B., Themistoclakis W., “Orthogonal polynomial wavelets”, Numerical Algorithms, 30 (2002), 37-58 · Zbl 0998.42020 · doi:10.1023/A:1015689418605 [6] Capobiancho M. R., Themistoclakis W., “Interpolating polynomial wavelet on \([-1,1]\)”, Advanced Comput. Math., 23 (2005), 353-374 · Zbl 1071.65192 · doi:10.1007/s10444-004-1828-2 [7] Dao-Qing Dai, Wei Lin, “Orthonormal polynomial wavelets on the interval”, Proc. Amer. Math. Soc., 134:5 (2005), 1383-1390 · Zbl 1089.42022 · doi:10.1090/S0002-9939-05-08088-3 [8] Mohd F., Mohd I., “Orthogonal functions based on Chebyshev polynomials”, Matematika, 27:1 (2011), 97-107 [9] Sege G., Ortogonalnye mnogochleny, Fizmatlit, M., 1962, 500 pp. [10] Yakhnin B. M., “O funktsiyakh Lebega razlozhenii v ryady po polinomam Yakobi dlya sluchaev \(\alpha=\beta=\frac12, \alpha=\beta=-\frac12, \alpha=\frac12, \beta=-\frac12\)”, Uspekhi mat. nauk, 13:6(84) (1958), 207-211 · Zbl 0087.06101 [11] Yakhnin B. M., “Priblizhenie funktsii klassa \(\text{Lip}_\alpha\) chastnymi summami ryada Fure po mnogochlenam Chebysheva 2-go roda”, Izv. vuzov. Matematika, 1963, no. 1, 172-178 · Zbl 0152.05702 [12] Bernshtein S. N., O mnogochlenakh, ortogonalnykh na konechnom intervale, Gos. nauch.-tekh. izd-vo Ukrainy, Kharkov, 1937, 128 pp. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.