Durdiev, Durdimurod Kalandarovich; Totieva, Zhanna Dmitrievna The problem of determining the multidimensional kernel of viscoelasticity equation. (Russian. English summary) Zbl 1474.45100 Vladikavkaz. Mat. Zh. 17, No. 4, 18-43 (2015). Summary: The integro-differential system of viscoelasticity equations is considered. The direct problem of determining of the displacements vector from the initial-boundary problem for this system is formulated. It is assumed that the kernel in the integral part depends on both the time and the space variable \(x_2\). For its determination an additional condition relative to the first component of the displacements vector with \(x_3=0\) is posed. The inverse problem is replaced by the equivalent system of integral equations. The study is based on the method of scales of Banach spaces of analytic functions. The theorem on local unique solvability of the inverse problem is proved in the class of functions analytic on the variable \(x_2\) and continuous on \(t\). Cited in 25 Documents MSC: 45Q05 Inverse problems for integral equations 45K05 Integro-partial differential equations 74D05 Linear constitutive equations for materials with memory Keywords:inverse problem; stability; delta function; Lame’s coefficients; kernel PDFBibTeX XMLCite \textit{D. K. Durdiev} and \textit{Z. D. Totieva}, Vladikavkaz. Mat. Zh. 17, No. 4, 18--43 (2015; Zbl 1474.45100) Full Text: MNR References: [1] Tuaeva Zh. D., “Mnogomernaya matematicheskaya model seismiki s pamyatyu”, Issledovaniya po dif. uravneniyam i mat. modelirovaniyu, Itogi nauki. YuFO. Mat. forum, 1, ch. 2, VNTs RAN, Vladikavkaz, 2008, 297-306 [2] Durdiev D. K., Totieva Zh. D., “Zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matem., 16:2 (2013), 72-82 · Zbl 1340.35382 [3] Ovsyannikov L. V., “Singulyarnyi operator v shkale banakhovykh prostranstv”, Dokl. AN SSSR, 163:4 (1965), 819-822 · Zbl 0144.39003 [4] Ovsyannikov L. V., “Nelineinaya zadacha Koshi v shkalakh banakhovykh prostranstv”, Dokl. AN SSSR, 200:4 (1971), 789-792 · Zbl 0234.35018 [5] Nirenberg L., Topics in Nonlinear Functional Analysis, Courant Institute Math. Sci., New York Univ., N.Y., 1974, 259 pp. · Zbl 0286.47037 [6] Romanov V. G., “O lokalnoi razreshimosti nekotorykh mnogomernykh obratnykh zadach dlya uravnenii giperbolicheskogo tipa”, Dif. uravneniya, 25:2 (1989), 275-284 [7] Romanov V. G., “Voprosy korrektnosti zadachi opredeleniya skorosti zvuka”, Sib. mat. zhurn., 30:4 (1989), 125-134 · Zbl 0712.76082 [8] Romanov V. G., “O razreshimosti obratnykh zadach dlya giperbolicheskikh uravnenii v klasse funktsii, analiticheskikh po chasti peremennykh”, Dokl. AN SSSR, 304:4 (1989), 807-811 · Zbl 0682.35105 [9] Durdiev D. K., “Mnogomernaya obratnaya zadacha dlya uravneniya s pamyatyu”, Sib. mat. zhurn., 35:3 (1994), 574-582 · Zbl 0859.35134 [10] Durdiev D. K., “Some multidimensional inverse problems of memory determination in hyperbolic equations”, Zh. Mat. Fiz. Anal. Geom., 3:4 (2007), 411-423 · Zbl 1257.35191 [11] Durdiev D. K., Safarov Zh. Sh., “Lokalnaya razreshimost zadachi opredeleniya prostranstvennoi chasti mnogomernogo yadra v integrodifferentsialnom uravnenii giperbolicheskogo tipa”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2012, no. 4(29), 37-47 · Zbl 1449.35461 · doi:10.14498/vsgtu1097 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.