Ivanov, A. V. Asymptotically optimal criteria for testing parametric hypothesis on the distribution of a random vector. I. (Russian. English summary) Zbl 1476.62048 Mat. Vopr. Kriptografii 6, No. 3, 89-116 (2015). Summary: We construct asymptotically optimal criteria for testing two simple hypotheses on the scalar parameter of discrete noise in a combined semicontinuos communication channel for the triangular scheme. Probabilistic characteristics of these criteria are obtained (in particular, asymptotics of the minimal sample size for given error probabilities of two kinds). It is shown that the minimal sample size depends essentially on the channel parameters.For Part II, see [the author, ibid. 6, No. 4, 49–64 (2015; Zbl 1476.62049)]. Cited in 1 ReviewCited in 1 Document MSC: 62F03 Parametric hypothesis testing 94A05 Communication theory Keywords:combined semicontinuos communication channel; asymptotically optimum criteria; triangular scheme; asymptotically minimal sample size Citations:Zbl 1476.62049 × Cite Format Result Cite Review PDF Full Text: DOI MNR References: [1] Arbekov I. M., “Optimalnaya diskretizatsiya nablyudenii slabykh signalov pri ogranichenii na skorost kvantovaniya”, Problemy peredachi informatsii, 34:1 (1998), 69-76 · Zbl 0932.94015 [2] Borovkov A. A., Matematicheskaya statistika, 4-e izd., Lan, Sankt-Peterburg-Moskva-Krasnodar, 2010, 704 pp. [3] Verner M., Osnovy kodirovaniya, Tekhnosfera, M., 2004, 288 pp. [4] Gaek Ya., Shidak Z., Teoriya rangovykh kriteriev, Nauka, M., 1971, 376 pp. [5] Gnedenko B. V., Kurs teorii veroyatnostei, 6-e izd., Nauka, M., 1988, 448 pp. · Zbl 0645.60001 [6] Ivanov A. V., “Asimptoticheski naibolee moschnyi kriterii razlicheniya gipotez o raspredelenii sluchainogo vektora”, 10-ya Obscheros. nauch. konf. MaBIT-2011, Materialy sektsii “Matematicheskie problemy informatsionnoi bezopasnosti”, MAKS-PRESS, M., 2012, 93-97 [7] Ivanov A. V., “Asimptoticheski optimalnye kriterii v zadache razlicheniya gipotezo raspredelenii sluchainogo vektora”, Obozr. prikl. i promyshl. matem., 20:2 (2013), 139-141 [8] Ivanov A. V., “Asimptoticheski optimalnye kriterii v zadache razlicheniya gipotez o raspredelenii sluchainogo vektora. II”, Obozr. prikl. i promyshl. matem., 20:4 (2013), 548-550 [9] Ivanov A. V., “Asimptoticheski optimalnye kriterii v zadache razlicheniya gipotez o raspredelenii sluchainogo vektora. III”, Obozr. prikl. i promyshl. matem., 21:1 (2014), 58-60 [10] Maksimov Yu. I., “Postroenie i analiz statisticheskikh kriteriev dlya nekotorykh skhem sluchainykh posledovatelnostei so znacheniyami iz polya \(GF(q)\)”, Trudy po diskretnoi matematike, 5, 2002, 159-166 [11] Pazizin S. V., “Obnaruzhenie i priem posledovatelnosti signalov, iskazhennykh sluchainoi pomekhoi i nezavisimym shumom”, Problemy peredachi informatsii, 34:1 (1998), 46-55 · Zbl 1031.94505 [12] Pazizin S. V., “Veroyatnosti pravilnogo dekodirovaniya dlya kanala s additivnym normalnym shumom i dvoichnogo simmetrichnogo kanala pri sluchainom vybore kodovykh slov”, Diskretnaya matematika, 12:2 (2000), 93-98 · Zbl 1011.94009 · doi:10.4213/dm333 [13] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 320 pp. · Zbl 0621.60022 [14] Rusas Dzh., Kontigualnost veroyatnostnykh mer, Mir, M., 1975, 256 pp. [15] Chibisov D. M., “Teorema o dopustimykh kriteriyakh i ee primenenie k odnoi asimptoticheskoi zadache proverki gipotez”, Teoriya veroyatn. i ee primen., 21:1 (1967), 96-111 · Zbl 0214.45802 [16] Arbekov I. M., “Asymptotically optimum detection of a weak signal sequence with random time delays”, IEEE Trans. Inf. Theory, 41:4 (1995), 1169-1174 · Zbl 0830.94003 · doi:10.1109/18.391264 [17] Kassam S. A., Signal detection in non-gaussian noise, Springer-Verlag, New-York, 1988, 235 pp. [18] Miller J. H., Thomas J. B., “Detectors for discrete-time signals in non-gaussian noise”, IEEE Trans. Inf. Theory, 18:2 (1972), 241-250 · Zbl 0231.94028 · doi:10.1109/TIT.1972.1054787 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.