×

Liouville-type theorem for fractional Kirchhoff equations with weights. (English) Zbl 1477.35050

Summary: In this paper, we prove a Liouville-type theorem for stable solutions to fractional Kirchhoff equations with polynomial nonlinearities and weights.

MSC:

35B53 Liouville theorems and Phragmén-Lindelöf theorems in context of PDEs
35J62 Quasilinear elliptic equations
35B35 Stability in context of PDEs
35R09 Integro-partial differential equations
35R11 Fractional partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alves, CO; Corrêa, FJSA; Figueiredo, GM, On a class of nonlocal elliptic problems with critical growth, Differ. Equ. Appl., 2, 3, 409-417 (2010) · Zbl 1198.35281
[2] Ambrosio, V., Multiplicity and concentration of solutions for a fractional Kirchhoff equation with magnetic field and critical growth, Ann. Henri Poincaré, 20, 8, 2717-2766 (2019) · Zbl 1420.35337 · doi:10.1007/s00023-019-00803-5
[3] Ambrosio, V.; Isernia, T., A multiplicity result for a fractional Kirchhoff equation in \(\mathbb{R}^N\) with a general nonlinearity, Commun. Contemp. Math., 20, 5, 1750054 (2018) · Zbl 1394.35544 · doi:10.1142/S0219199717500547
[4] Autuori, G.; Colasuonno, F.; Pucci, P., On the existence of stationary solutions for higher-order \(p\)-Kirchhoff problems, Commun. Contemp. Math., 16, 5, 1450002 (2014) · Zbl 1325.35129 · doi:10.1142/S0219199714500023
[5] Autuori, G.; Fiscella, A.; Pucci, P., Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125, 699-714 (2015) · Zbl 1323.35015 · doi:10.1016/j.na.2015.06.014
[6] Autuori, G.; Pucci, P., Kirchhoff systems with nonlinear source and boundary damping terms, Commun. Pure Appl. Anal., 9, 5, 1161-1188 (2010) · Zbl 1223.35082 · doi:10.3934/cpaa.2010.9.1161
[7] Autuori, G.; Pucci, P.; Salvatori, MC, Asymptotic stability for nonlinear Kirchhoff systems, Nonlinear Anal. Real World Appl., 10, 2, 889-909 (2009) · Zbl 1167.35314 · doi:10.1016/j.nonrwa.2007.11.011
[8] Autuori, G.; Pucci, P.; Salvatori, MC, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal., 196, 2, 489-516 (2010) · Zbl 1201.35138 · doi:10.1007/s00205-009-0241-x
[9] Binlin, Z.; Rădulescu, VD; Wang, L., Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian, Proc. R. Soc. Edinb. Sect. A, 149, 4, 1061-1081 (2019) · Zbl 1442.35501 · doi:10.1017/prm.2018.105
[10] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32, 7-9, 1245-1260 (2007) · Zbl 1143.26002 · doi:10.1080/03605300600987306
[11] Dávila, J.; Dupaigne, L.; Wei, J., On the fractional Lane-Emden equation, Trans. Am. Math. Soc., 369, 9, 6087-6104 (2017) · Zbl 1515.35311 · doi:10.1090/tran/6872
[12] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 5, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[13] Duong, A.T., Nguyen, V.H.: A Liouville type theorem for fractional elliptic equation with exponential nonlinearity (2019). arXiv:1911.05966
[14] Dupaigne, L.: Stable solutions of elliptic partial differential equations. In: Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 143. Chapman & Hall/CRC, Boca Raton, FL (2011). xiv+321 pp. ISBN: 978-1-4200-6654-8 · Zbl 1228.35004
[15] Fan, H.; Liu, X., Positive and negative solutions for a class of Kirchhoff type problems on unbounded domain, Nonlinear Anal., 114, 186-196 (2015) · Zbl 1308.35006 · doi:10.1016/j.na.2014.07.012
[16] Farina, A., On the classification of solutions of the Lane-Emden equation on unbounded domains of \(\mathbb{R}{\mathbb{R}}^n N\), J. Math. Pures Appl. (9), 87, 5, 537-561 (2007) · Zbl 1143.35041 · doi:10.1016/j.matpur.2007.03.001
[17] Fazly, M.; Wei, J., On stable solutions of the fractional Hénon-Lane-Emden equation, Commun. Contemp. Math., 18, 5, 1650005 (2016) · Zbl 1344.35163 · doi:10.1142/S021919971650005X
[18] Gu, G.; Tang, X.; Zhang, Y., Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent, Commun. Pure Appl. Anal., 18, 6, 3181-3200 (2019) · Zbl 1480.35391 · doi:10.3934/cpaa.2019143
[19] He, X.; Zou, W., Multiplicity of concentrating solutions for a class of fractional Kirchhoff equation, Manuscr. Math., 158, 1-2, 159-203 (2019) · Zbl 06999370 · doi:10.1007/s00229-018-1017-0
[20] Huynh, NV; Le, P., Instability of solutions to Kirchhoff type problems in low dimension, Ann. Pol. Math., 124, 1, 75-91 (2020) · Zbl 1464.35126 · doi:10.4064/ap181120-3-5
[21] Huynh, NV; Le, P.; Nguyen, DP, Liouville theorems for Kirchhoff equations in \(\mathbb{R}^N\), J. Math. Phys., 60, 6, 061506 (2019) · Zbl 1418.35353 · doi:10.1063/1.5096238
[22] Isernia, T., Sign-changing solutions for a fractional Kirchhoff equation, Nonlinear Anal., 190, 111623 (2020) · Zbl 1428.35663 · doi:10.1016/j.na.2019.111623
[23] Jin, H.; Liu, W., Fractional Kirchhoff equation with a general critical nonlinearity, Appl. Math. Lett., 74, 140-146 (2017) · Zbl 1375.35604 · doi:10.1016/j.aml.2017.06.003
[24] Le, P.; Huynh, NV; Ho, V., Classification results for Kirchhoff equations in \(\mathbb{R}^N\), Complex Var. Elliptic Equ., 64, 7, 1146-1157 (2019) · Zbl 1418.35155 · doi:10.1080/17476933.2018.1505874
[25] Li, A.; Su, J., Existence and multiplicity of solutions for Kirchhoff-type equation with radial potentials in \(\mathbb{R}^3\), Z. Angew. Math. Phys., 66, 6, 3147-3158 (2015) · Zbl 1332.35111 · doi:10.1007/s00033-015-0551-9
[26] Li, Y.; Li, F.; Shi, J., Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differ. Equ., 253, 7, 2285-2294 (2012) · Zbl 1259.35078 · doi:10.1016/j.jde.2012.05.017
[27] Lions, J.-L.: On some questions in boundary value problems of mathematical physics. In: Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), vol. 30, , pp. 284-346. North-Holland Math. Stud., North-Holland (1978) · Zbl 0404.35002
[28] Mingqi, X., Rădulescu, V.D., Zhang, B.: Correction to: Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity. Calc. Var. Partial Differ. Equ. 58, 4, Art. 140, 3 (2019) · Zbl 1447.35361
[29] Molica Bisci, G., Radulescu, V.D., Servadei, R.: Variational methods for nonlocal fractional problems. In: With a foreword by Jean Mawhin Encyclopedia of Mathematics and its Applications, vol. 162. Cambridge. University Press, Cambridge (2016). xvi+383 pp. ISBN: 978-1-107-11194-3 · Zbl 1356.49003
[30] Nie, J.; Wu, X., Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential, Nonlinear Anal., 75, 8, 3470-3479 (2012) · Zbl 1239.35131 · doi:10.1016/j.na.2012.01.004
[31] Pan, N.; Pucci, P.; Xu, R.; Zhang, B., Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms, J. Evol. Equ., 19, 3, 615-643 (2019) · Zbl 1423.35409 · doi:10.1007/s00028-019-00489-6
[32] Pucci, P.; Rădulescu, VD, Progress in nonlinear Kirchhoff problems [Editorial], Nonlinear Anal., 186, 1-5 (2019) · Zbl 1476.00078 · doi:10.1016/j.na.2019.02.022
[33] Pucci, P.; Saldi, S., Critical stationary Kirchhoff equations in \(\mathbb{R}^N\) involving nonlocal operators, Rev. Mat. Iberoam., 32, 1, 1-22 (2016) · Zbl 1405.35045 · doi:10.4171/RMI/879
[34] Wei, Y.; Chen, C.; Song, H.; Yang, H., Liouville-type theorems for stable solutions of Kirchhoff equations with exponential and superlinear nonlinearities, Complex Var. Elliptic Equ., 64, 8, 1297-1309 (2019) · Zbl 1419.35044 · doi:10.1080/17476933.2018.1514030
[35] Xiang, M.; Zhang, B.; Rădulescu, VD, Existence of solutions for a bi-nonlocal fractional \(p\)-Kirchhoff type problem, Comput. Math. Appl., 71, 1, 255-266 (2016) · Zbl 1443.35178 · doi:10.1016/j.camwa.2015.11.017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.