×

Determination of journeys order based on graph’s Wiener absolute index with bipolar fuzzy information. (English) Zbl 1478.05027

Summary: Due to the existence of two opposite sided opinions in bipolar fuzzy graphs, the positive and negative communication between all pair of vertices always may not be strong. So, the connectivity sustain is one of the major important part in a bipolar fuzzy network system. First, Wiener index for a bipolar fuzzy graph is introduced and explained their properties. Second, the terms Wiener absolute index is created based on the total accurate connectivity between all the pair of vertices and in the whole bipolar fuzzy graph. Third, the behavior of Wiener absolute index is visualized in several bipolar fuzzy graphs like bipolar fuzzy forest, bridge, and tree. Fourth, a comparative discussion between connectivity index and Wiener index in bipolar fuzzy graphs are established. Finally, an application of all these thought is displayed in regular journeys from the city Paris to Brest.

MSC:

05C09 Graphical indices (Wiener index, Zagreb index, Randić index, etc.)
05C72 Fractional graph theory, fuzzy graph theory
05C90 Applications of graph theory
05C82 Small world graphs, complex networks (graph-theoretic aspects)
05C12 Distance in graphs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Binu, M.; Mathew, S.; Mordeson, J. N., Wiener index of a fuzzy graph and application to illegal immigration networks, Fuzzy Sets Syst., 384, 132-147 (2020) · Zbl 1465.05039
[2] Citil, H. G., Investigation of a fuzzy problem by the fuzzy Laplace transform, Appl. Math. Nonlinear Sci., 4, 2, 407-416 (2019) · Zbl 1524.44002
[3] Gao, W.; Guirao, J. L.G.; Basavanagoud, B.; Wu, J., Partial multi-dividing ontology learning algorithm, Inf. Sci., 467, 35-58 (2018) · Zbl 1441.68244
[4] W. Gao, W. Wang, The vertex version of weighted Wiener number for bicyclic molecular structures, Comput. Math. Methods Med. 2015 (2015) 10. Article ID 418106. doi: 10.1155/2015/418106. · Zbl 1343.92579
[5] Ghorai, G.; Pal, M., Regular product vague graphs and product vague line graphs, Cogent Math. Stat., 3, 1, 1-13 (2016) · Zbl 1426.05144
[6] Ghorai, G.; Pal, M., Some isomorphic properties of m-polar fuzzy graphs with applications, SpringerPlus, 5, 1, 1-21 (2016)
[7] Ghorai, G.; Pal, M., A note on “Regular bipolar fuzzy graphs Neural Computing and Applications 21(1) 2012 197-205, Neural Comput. Appl., 30, 5, 1569-1572 (2018)
[8] G. Ghorai, K. Jacob, Recent developments on the basics of fuzzy graph theory, in: Handbook of Research on Advanced Applications of Graph Theory in Modern Society, IGI Global, 2019, DOI: 10.4018/978-1-5225-9380-5.ch018.
[9] Imran, M.; Baig, A. Q.; Ali, H., On molecular topological properties of hex derived networks, J. Chemometr., 30, 3, 121-129 (2016)
[10] M.G. Karunambigai, M. Akram, K. Palanivel, S. Sivasankar, Domination in bipolar fuzzy graphs, in: 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2013. DOI:10.1109/FUZZ-IEEE.2013.6622326, 7-10 July.
[11] Knor, M.; Škrekovski, R.; Tepeh, A., Mathematical aspects of Wiener index, ARS Math. Contemporanea, 11, 2, 327-352 (2016) · Zbl 1355.05099
[12] L. Lietard, N. Tamani, D. Rocacher, Fuzzy bipolar conditions of type or else, in: 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), 2011.
[13] Mathew, S.; Sunitha, M. S.; Anjali, N., Some connectivity concepts in bipolar fuzzy graphs, Annals of, Pure Appl. Math., 7, 2, 98-108 (2014)
[14] J.N. Mordeson, S. Mathew, Advanced topics in fuzzy graph theory, in: Studies in Fuzziness and Soft Computing, vol. 375, Springer International Publishing, 2019. DOI: 10.1007/978-3-030-04215-8 · Zbl 1406.05003
[15] Ozturk, M.; Tsoukias, A., Bipolar preference modeling and aggregation in decision support, Int. J. Intell. Syst., 23, 9, 970-984 (2008) · Zbl 1153.68474
[16] Poulik, S.; Ghorai, G., Certain indices of graphs under bipolar fuzzy environment with applications, Soft Comput., 24, 7, 5119-5131 (2020) · Zbl 1490.05231
[17] Poulik, S.; Ghorai, G., Detour g-interior nodes and detour g-boundary nodes in bipolar fuzzy graph with applications, Hacettepe J. Math. Stat., 49, 1, 106-119 (2020) · Zbl 1488.05422
[18] Poulik, S.; Ghorai, G., Note on “bipolar fuzzy graphs with applications, Knowl.-Based Syst., 192, 1-5 (2020)
[19] Poulik, S.; Ghorai, G.; Xin, Q., Pragmatic results in Taiwan education system based IVFG & IVNG, Soft Comput. (2020)
[20] Prade, H.; Serrurier, M., Bipolar version space learning, Int. J. Intell. Syst., 23, 10, 1135-1152 (2008) · Zbl 1155.68083
[21] Raza, Z., Leap Zagreb connection numbers for some networks models, Indonesian J. Chem. (2020)
[22] Rosenfield, R., (Zadeh, L. A.; Fu, K. S.; Shimura, M., Fuzzy graphs, Fuzzy Sets and Their Application (1975), Academic press: Academic press New York), 77-95
[23] Samanta, S.; Pal, M., Fuzzy planar graphs, IEEE Trans. Fuzzy Syst., 23, 6, 1936-1942 (2015)
[24] Samanta, S.; Sarkar, B., Generalized fuzzy Euler graphs and generalized fuzzy Hamiltonian graphs, J. Intell. Fuzzy Syst., 35, 3, 3413-3419 (2018)
[25] Samanta, S.; Sarkar, B.; Shin, D.; Pal, M., Completeness and regularity of generalized fuzzy graphs, Springerplus, 5, 1, 1-14 (2016)
[26] Škrekovski, R.; Dimitrov, D.; Zhong, J. M.; Wu, H. L.; Gao, W., Remarks on multiplicative atom bond connectivity index, IEEE Access, 7, 1, 76806-76811 (2019)
[27] Wiener, H., Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69, 1, 17-20 (1947)
[28] R.R. Yager, Pythagorean fuzzy subsets, 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013.
[29] Yager, R. R., Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst., 22, 4, 958-965 (2014)
[30] Yager, R. R.; Alajlan, N., Approximate reasoning with generalized orthopair fuzzy sets, Inf. Fusion, 38, 65-73 (2017)
[31] Yager, R. R.; Alajlan, N.; Bazi, Y., Aspects of generalized orthopair fuzzy sets, Int. J. Intell. Syst., 33, 11, 2154-2174 (2018)
[32] Yager, R. R., Extending set measures to Pythagorean fuzzy sets, Int. J. Fuzzy Syst., 21, 2, 343-354 (2019)
[33] Yang, H. L.; Li, S. G.; Guo, Z. L.; Ma, C. H., Transformation of bipolar fuzzy rough set models, Knowl.-Based Syst., 27, 60-68 (2012)
[34] Yang, H. L.; Li, S. G.; Wang, S.; Wang, J., Bipolar fuzzy rough set model on two different universes and its application, Knowl.-Based Syst., 35, 94-101 (2012)
[35] Yang, H. L.; Li, S. G.; Yang, W. H.; Lu, Y., Notes on bipolar fuzzy graphs, Inf. Sci., 242, 113-121 (2013) · Zbl 1321.05219
[36] Zadeh, L. A., Fuzzy sets, Inf. Control, 8, 3, 338-353 (1965) · Zbl 0139.24606
[37] W. Zhang, Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis, NAFIPS/IFIS/NASA ’94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference, The Industrial Fuzzy Control and Intellige, 305-309, 18-21 Dec., 1994
[38] Zhang, W., Equilibrium relations and bipolar cognitive mapping for online analytical processing with applications in international relations and strategic decision support, IEEE Trans. Syst. Man Cybern. B (Cybern.), 33, 2, 295-307 (2003)
[39] W. Zhang, (Yin) (Yang) bipolar fuzzy sets, 1998 IEEE International Conference on Fuzzy Systems Proceedings, IEEE World Congress on Computational Intelligence, 4-9 May, 1998. DOI: 10.1109/FUZZY.1998.687599.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.