×

Uniform K-stability and asymptotics of energy functionals in Kähler geometry. (English) Zbl 1478.53115

J. Eur. Math. Soc. (JEMS) 21, No. 9, 2905-2944 (2019); erratum ibid. 24, No. 2, 735-736 (2022).
Summary: Consider a polarized complex manifold \((X, L)\) and a ray of positive metrics on \(L\) defined by a positive metric on a test configuration for \((X, L)\). For many common functionals in Kähler geometry, we prove that the slope at infinity along the ray is given by evaluating the non-Archimedean version of the functional (as defined in our earlier paper [Ann. Inst. Fourier 67, No. 2, 743–841 (2017; Zbl 1391.14090)]) at the non-Archimedean metric on \(L\) defined by the test configuration. Using this asymptotic result, we show that coercivity of the Mabuchi functional implies uniform K-stability, as defined in [R. Dervan, Int. Math. Res. Not. 2016, No. 15, 4728–4783 (2016; Zbl 1405.32032); the authors, loc. cit.]. As a partial converse, we show that uniform K-stability implies coercivity of the Mabuchi functional when restricted to Bergman metrics.

MSC:

53C55 Global differential geometry of Hermitian and Kählerian manifolds
14L24 Geometric invariant theory
32P05 Non-Archimedean analysis
32Q20 Kähler-Einstein manifolds
32Q26 Notions of stability for complex manifolds
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Antonakoudis, S.: Valuative criteria of separatedness and properness.https://www. dpmms.cam.ac.uk/∼sa443/papers/criteria.pdf
[2] Berkovich, V.: Spectral Theory and Analytic Geometry over Non-Archimedean Fields. Math. Surveys Monogr. 33, Amer. Math. Soc., Providence, RI (1990)Zbl 0715.14013 MR 1070709 · Zbl 0715.14013
[3] Berkovich, V. G.: A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures. In: Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin. Progr. Math. 269, Birkh¨auser, Boston, MA, 49-67 (2009) Zbl 1195.14014 MR 2641170 · Zbl 1195.14014
[4] Berman, R. J.: K-polystability of Q-Fano varieties admitting K¨ahler-Einstein metrics. Invent. Math. 203, 973-1025 (2016)Zbl 1353.14051 MR 3461370 · Zbl 1353.14051
[5] Berman, R. J., Berndtsson, B.: Convexity of the K-energy on the space of K¨ahler metrics and uniqueness of extremal metrics. J. Amer. Math. Soc. 30, 1165-1196 (2017) Zbl 1376.32028 MR 3671939 [BB+11] Berman, R. J., Boucksom, S., Eyssidieux, P., Guedj, V., Zeriahi, A.: K¨ahler-Einstein metrics and the K¨ahler-Ricci flow on log Fano varieties.arXiv:1111.7158(2011) [BB+13] Berman, R. J., Boucksom, S., Guedj, V., Zeriahi, A.: A variational approach to complex Monge-Amp‘ere equations. Publ. Math. Inst. Hautes ´Etudes Sci. 117, 179-245 (2013) Zbl 1277.32049 MR 3090260
[6] Berman, R. J., Boucksom, S., Jonsson, M.: A variational approach to the Yau-Tian- Donaldson conjecture.arXiv:1509.04561(2015) · Zbl 1487.32141
[7] Berman, R. J., Darvas, T., Lu, C. H.: Regularity of weak minimizers of the K-energy and applications to properness and K-stability.arXiv:1602.03114(2016) · Zbl 1452.32027
[8] Boucksom, S., Favre, C., Jonsson, M.: Singular semipositive metrics in nonArchimedean geometry. J. Algebraic Geom. 25, 77-139 (2016)Zbl 1346.14065 MR 3419957 · Zbl 1346.14065
[9] Boucksom, S., Favre, C., Jonsson, M.: Solution to a non-Archimedean Monge-Amp‘ere equation. J. Amer. Math. Soc., 28, 617-667 (2015)Zbl 1325.32021 MR 3327532 · Zbl 1325.32021
[10] Boucksom, S., Hisamoto, T., Jonsson, M.: Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs. Ann. Inst. Fourier (Grenoble) 67, 743-841 (2017) Zbl 1391.14090 MR 3669511 · Zbl 1391.14090
[11] Boucksom, S., Jonsson, M.: Tropical and non-Archimedean limits of degenerating families of volume forms. J. ´Ecole Polytech. Math. 4, 87-139 (2017)Zbl 1401.32019 MR 3611100 · Zbl 1401.32019
[12] Boucksom, S., Jonsson, M.: Singular semipositive metrics on line bundles on varieties over trivially valued fields.arXiv:1801.08229(2018)
[13] Chen, X. X.: On the lower bound of the Mabuchi energy and its application. Int. Math. Res. Notices 2000, 607-623Zbl 0980.58007 MR 1772078 2942S´ebastien Boucksom et al. · Zbl 0980.58007
[14] Chen, X. X., Donaldson, S. K., Sun, S.: K¨ahler-Einstein metrics on Fano manifolds, I-III. J. Amer. Math. Soc. 28, 183-197, 199-234, 235-278 (2015)Zbl 1311.53059 MR 3264767 · Zbl 1312.53096
[15] Chen, X. X., Sun, S., Wang, B.: K¨ahler-Ricci flow, K¨ahler-Einstein metric, and Kstability. Geom. Topol. 22, 3145-3173 (2018)Zbl 1404.53058 MR 3858762 · Zbl 1404.53058
[16] Darvas, T., Rubinstein, Y. A.: Tian’s properness conjectures and Finsler geometry of the space of K¨ahler metrics. J. Amer. Math. Soc. 30, 347-387 (2017)Zbl 1386.32021 MR 3600039 · Zbl 1386.32021
[17] Datar, V., Sz´ekelyhidi, G.: K¨ahler-Einstein metrics along the smooth continuity method. Geom. Funct. Anal. 26, 975-1010 (2016)Zbl 1359.32019 MR 3558304 · Zbl 1359.32019
[18] Dervan, R.: Uniform stability of twisted constant scalar curvature K¨ahler metrics. Int. Math. Res. Notices 2016, 4728-4783Zbl 1405.32032 MR 3564626 · Zbl 1405.32032
[19] Dervan, R., Ross, J.: K-stability for K¨ahler manifolds. Math. Res. Lett. 24, 689-739 (2017)Zbl 1390.32021 MR 3696600 · Zbl 1390.32021
[20] Ding, W.-Y.: Remarks on the existence problem for positive K¨ahler-Einstein metrics. Math. Ann. 282, 463-471 (1988)Zbl 0661.53045 MR 0967024 · Zbl 0661.53045
[21] Ding, W.-Y., Tian, G.: K¨ahler-Einstein metrics and the generalized Futaki invariant. Invent. Math. 110, 315-335 (1992)Zbl 0779.53044 MR 1185586 · Zbl 0779.53044
[22] Donaldson, S. K.: Symmetric spaces, K¨ahler geometry and Hamiltonian dynamics. In: Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. (2) 196, Amer. Math. Soc., Providence, RI, 13-33 (1999)Zbl 0972.53025 MR 1736211 · Zbl 0972.53025
[23] Donaldson, S. K.: Scalar curvature and stability of toric varieties. J. Differential Geom. 62, 289-349 (2002)Zbl 1074.53059 MR 1988506 · Zbl 1074.53059
[24] Donaldson, S. K.: Lower bounds on the Calabi functional. J. Differential Geom. 70, 453-472 (2005)Zbl 1149.53042 MR 2192937 · Zbl 1149.53042
[25] Donaldson, S. K.: Stability, birational transformations and the K¨ahler-Einstein problem. In: Surveys Diff. Geom. 17, Int. Press, Boston, MA, 203-228 (2012)Zbl 1382.32018 MR 3076062 · Zbl 1382.32018
[26] Elkik, R.: Fibr´es d’intersections et int´egrales de classes de Chern. Ann. Sci. ´Ecole Norm. Sup. (4) 22, 195-226 (1989)Zbl 0701.14003 MR 1005159 · Zbl 0701.14003
[27] Elkik, R.: M´etriques sur les fibr´es d’intersection. Duke Math. J. 61, 303-328 (1990) Zbl 0706.14008 MR 1068389 · Zbl 0706.14008
[28] Fujita, K.: Optimal bounds for the volumes of K¨ahler-Einstein Fano manifolds. Amer. J. Math. 140, 391-414 (2018)Zbl 1400.14105 MR 3783213 · Zbl 1400.14105
[29] Fujita, K.: A valuative criterion for uniform K-stability of Q-Fano varieties. J. Reine Angew. Math. 751, 309-338 (2019)Zbl 07062939 MR 3956698 · Zbl 1435.14039
[30] Hisamoto, T.: On the limit of spectral measures associated to a test configuration of a polarized K¨ahler manifold. J. Reine Angew. Math. 713, 129-148 (2016)Zbl 1343.32017 MR 3483627 · Zbl 1343.32017
[31] Jonsson, M.: Degenerations of amoebae and Berkovich spaces. Math. Ann. 364, 293- 311 (2016)Zbl 1375.14214 MR 3451388 · Zbl 1375.14214
[32] Kapadia, H. M.: Deligne pairings and discriminants of algebraic varieties. arXiv:1312.7870(2013)
[33] Kempf, G.: Algebraic Varieties. London Math. Soc. Lecture Note Ser. 172, Cambridge Univ. Press, Cambridge (1993)Zbl 0780.14001 MR 1252397 · Zbl 0780.14001
[34] Li, C.: K¨ahler-Einstein metrics and K-stability. Ph.D. thesis, Princeton Univ. (2012) MR 3078441
[35] Li, C., Xu, C.: Special test configurations and K-stability of Fano varieties. Ann. of Math. 180, 197-232 (2014)Zbl 1301.14026 MR 3194814 Uniform K-stability and asymptotics of energy functionals2943 · Zbl 1301.14026
[36] Li, L.: Subharmonicity of conic Mabuchi’s functional, I. Ann. Inst. Fourier (Grenoble) 68, 805-845 (2018)Zbl 06984882 MR 3803119 · Zbl 1411.32024
[37] Mabuchi, T.: Some symplectic geometry on compact K¨ahler manifolds. I. Osaka J. Math. 24, 227-252 (1987)Zbl 0645.53038 MR 0909015 · Zbl 0645.53038
[38] Moriwaki, A.: The continuity of Deligne’s pairing. Int. Math. Res. Notices 1999, 1057- 1066Zbl 0956.14018 MR 1725483 · Zbl 0956.14018
[39] Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory. 3rd ed., Ergeb. Math. Grenzgeb. (2) 34, Springer, Berlin (1994)Zbl 0797.14004 MR 1304906 · Zbl 0797.14004
[40] Mu˜noz Garcia, E.: Fibr´es d’intersection. Compos. Math. 124, 219-252 (2000) Zbl 1072.14504 MR 1809336 · Zbl 1072.14504
[41] Odaka, Y.: A generalization of the Ross-Thomas slope theory. Osaka J. Math. 50, 171- 185 (2013)Zbl 1328.14073 MR 3080636 · Zbl 1328.14073
[42] Paul, S. T.: Geometric analysis of Chow Mumford stability. Adv. Math. 182, 333-356 (2004)Zbl 1050.53061 MR 2032032 · Zbl 1050.53061
[43] Paul, S. T.: Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics. Ann. of Math. (2) 175, 255-296 (2012)Zbl 1243.14038 MR 2874643 · Zbl 1243.14038
[44] Paul, S. T.: Stable pairs and coercive estimates for the Mabuchi functional. arXiv:1308.4377(2013)
[45] Paul, S. T., Tian, G.: CM stability and the generalized Futaki invariant I. arXiv:math/0605278(2006)
[46] Paul, S. T., Tian, G.: CM stability and the generalized Futaki invariant II. Ast´erisque 328, 339-354 (2009)Zbl 1204.53061 MR 2674882 · Zbl 1204.53061
[47] Phong, D. H., Ross, J., Sturm, J.: Deligne pairings and the Knudsen-Mumford expansion. J. Differential Geom. 78, 475-496 (2008)Zbl 1138.14003 MR 2396251 [PS+08]Phong, D. H., Song, J., Sturm, J., Weinkove, B.: The Moser-Trudinger inequality on K¨ahler-Einstein manifolds. Amer. J. Math. 130, 1067-1085 (2008)Zbl 1158.58005 MR 2427008 · Zbl 1158.58005
[48] Phong, D. H., Sturm, J.: Scalar curvature, moment maps, and the Deligne pairing. Amer. J. Math. 126, 693-712 (2004)Zbl 1077.53068 MR 2058389 · Zbl 1077.53068
[49] Semmes, S.: Complex Monge-Amp‘ere and symplectic manifolds. Amer. J. Math. 114, 495-550 (1992)Zbl 0790.32017 MR 1165352 · Zbl 0790.32017
[50] Sj¨ostr¨om Dyrefelt, Z.: K-semistability of cscK manifolds with transcendental cohomology class. J. Geom. Anal. 28, 2927-2960 (2018)Zbl 07002659 · Zbl 1409.32017
[51] Stoll, W.: The continuity of the fiber integral. Math. Z. 95, 87-138 (1966) Zbl 0148.31904 MR 0243113 · Zbl 0148.31904
[52] Stoppa, J.: K-stability of constant scalar curvature K¨ahler manifolds. Adv. Math. 221, 1397-1408 (2009)Zbl 1181.53060 MR 2518643 [Sz´e06]Sz´ekelyhidi, G.: Extremal metrics and K-stability. Ph.D thesis,arXiv:math/0611002 (2006) [Sz´e15]Sz´ekelyhidi, G.: Filtrations and test-configurations (with an appendix by S. Boucksom). Math. Ann. 362, 451-484 (2015)Zbl 1360.53075 MR 3343885 [Sz´e16]Sz´ekelyhidi, G.: The partial C0-estimate along the continuity method. J. Amer. Math. Soc. 29, 537-560 (2016)Zbl 1335.53098 MR 3454382
[53] Thomas, R.: Notes on GIT and symplectic reduction for bundles and varieties. In: Surveys Diff. Geom. 10, Int. Press, Somerville, MA, 221-273 (2006)Zbl 1132.14043 MR 2408226 · Zbl 1132.14043
[54] Tian, G.: K¨ahler-Einstein metrics with positive scalar curvature. Invent. Math. 130, 1-37 (1997)Zbl 0892.53027 MR 1471884 2944S´ebastien Boucksom et al. · Zbl 0892.53027
[55] Tian, G.: Canonical Metrics in K¨ahler Geometry. Lectures in Math. ETH Z¨urich, Birkh¨auser, Basel (2000)Zbl 0978.53002 MR 1787650 · Zbl 0978.53002
[56] Tian, G.: Existence of Einstein metrics on Fano manifolds. In: Metric and Differential Geometry, Progr. Math. 297, Birkh¨auser/Springer, Basel, 119-159 (2012) Zbl 1250.53044 MR 3220441 · Zbl 1250.53044
[57] Tian, G.: K-stability and K¨ahler-Einstein metrics. Comm. Pure Appl. Math. 68, 1085- 1156 (2015)Zbl 1318.14038 MR 3352459 · Zbl 1318.14038
[58] Tian, G.: K-stability implies CM-stability. In: J.-B. Bost et al. (eds.), Geometry, Analysis and Probability, Progr. Math. 310, Birkh¨auser, Cham, 245-261 (2017)Zbl 1376.32012 MR 3821930 · Zbl 1376.32012
[59] Wang, X.: Height and GIT weight. Math. Res. Lett. 19, 909-926 (2012)Zbl 06165862 MR 3008424 · Zbl 1408.14147
[60] Zhang, S.-W.: Heights and reductions of semi-stable varieties. Compos. Math. 104, 77- 105 (1996)Zbl 0924.11055 MR 1420712 · Zbl 0924.11055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.