×

Fault tolerant sampled-data \(\mathcal{H}_\infty\) control for networked control systems with probabilistic time-varying delay. (English) Zbl 1478.93145

Summary: In this study, the problem of fault-tolerant sampled-data \(\mathcal{H}_\infty\) control for a networked control system with random time delays and actuator faults is investigated. Stochastic variables conforming with the Bernoulli distribution are considered to depict random time delays. A state feedback sampled-data controller is designed to ensure the asymptotical stability and \(\mathcal{H}_\infty\) performance of the resulting closed-loop system. By applying the Lyapunov-Krasovskii stability theory and the reciprocally convex combination lemma, a stability criterion for a random time-varying delay system is developed that guarantees the designed controller can satisfy the requirements of stability and maneuverability. The desired controller gain is then found based on the linear matrix inequalities. Finally, as a real application, a quarter-vehicle suspension system model is provided to demonstrate the benefits and validity of the proposed control law.

MSC:

93B36 \(H^\infty\)-control
93C57 Sampled-data control/observation systems
93B70 Networked control
93E03 Stochastic systems in control theory (general)
93C43 Delay control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Tang, B.; Wang, J.; Zhang, Y., A delay-distribution approach to stabilization of networked control systems, IEEE Trans. Control Network Syst., 2, 382-392 (2015) · Zbl 1370.93126
[2] Yang, T. C., Networked control system: a brief survey, IEE Proc. Control Theory Appl., 153, 403-412 (2006)
[3] Wang, Y.-L.; Wang, T.-B.; Han, Q.-L., Fault detection filter design for data reconstruction-based continuous-time networked control systems, Inf. Sci., 328, 577-594 (2016) · Zbl 1386.93102
[4] Wang, K.; Tian, E.; Liu, J.; Wei, L.; Yue, D., Resilient control of networked control systems under deception attacks: a memory-event-triggered communication scheme, Int. J. Robust Nonlinear Control, 30, 1534-1548 (2020) · Zbl 1465.93054
[5] Li, C.; Jing, H.; Wang, R.; Chen, N., Vehicle lateral motion regulation under unreliable communication links based on robust \(\mathcal{H}_\infty\) output-feedback control schema, Mech. Syst. Signal Process., 104, 171-187 (2018)
[6] Hu, H.; Zhou, M.; Li, Z.; Tang, Y., An optimization approach to improved petri net controller design for automated manufacturing systems, IEEE Trans. Autom. Sci. Eng., 10, 772-782 (2013)
[7] Hong, C.; Kong-Hui, G., Constrained \(\mathcal{H}_\infty\) control of active suspensions: an LMI approach, IEEE Trans. Control Syst. Technol., 13, 412-421 (2005)
[8] Zhu, M.; Liu, J.; Lin, Z.; Meng, H., Mixed \(\mathcal{H}_2 / \mathcal{H}_\infty\) pitch control of wind turbine generator system based on global exact linearization and regional pole placement, Int. J. Mach. Learn. Cybern., 7, 921-930 (2016)
[9] Tian, E.; Wang, Z.; Zou, L.; Yue, D., Chance-constrained \(\mathcal{H}_\infty\) control for a class of time-varying systems with stochastic nonlinearities: the finite-horizon case, Automatica, 107, 296-305 (2019) · Zbl 1429.93090
[10] Gao, M.; Sheng, L.; Liu, Y.; Zhu, Z., Observer-based \(\mathcal{H}_\infty\) fuzzy control for nonlinear stochastic systems with multiplicative noise and successive packet dropouts, Neurocomputing, 173, 2001-2008 (2016)
[11] Khatibi, H.; Karimi, A., \( \mathcal{H}_\infty\) controller design using an alternative to Youla parameterization, IEEE Trans. Autom. Control, 55, 2119-2123 (2010) · Zbl 1368.93151
[12] Sun, W.; Gao, H.; Kaynak, O., Finite frequency \(\mathcal{H}_\infty\) control for vehicle active suspension systems, IEEE Trans. Control Syst. Technol., 19, 416-422 (2011)
[13] Wang, G.; Chen, C.; Yu, S., Robust non-fragile finite-frequency \(\mathcal{H}_\infty\) static output-feedback control for active suspension systems, Mech. Syst. Signal Process., 91, 41-56 (2017)
[14] Zhao, D.; Ding, S. X.; Karimi, H. R.; Li, Y.; Wang, Y., On robust Kalman filter for two-dimensional uncertain linear discrete time-varying systems: a least squares method, Automatica, 99, 203-212 (2019) · Zbl 1406.93354
[15] Zhao, D.; Ding, S. X.; Karimi, H. R.; Li, Y., Robust \(\mathcal{H}_\infty\) filtering for two-dimensional uncertain linear discrete time-varying systems: a Krein space-based method, IEEE Trans. Autom. Control, 64, 5124-5131 (2019) · Zbl 1482.93643
[16] Liu, Y.; Guo, B.; Park, J. H.; Lee, S., Nonfragile exponential synchronization of delayed complex dynamical networks with memory sampled-data control, IEEE Trans. Neural Networks Learn. Syst., 29, 118-128 (2018)
[17] Gao, H.; Sun, W.; Shi, P., Robust sampled-data \(\mathcal{H}_\infty\) control for vehicle active suspension systems, IEEE Trans. Control Syst. Technol., 18, 238-245 (2010)
[18] Ge, C.; Park, J. H.; Hua, C.; Guan, X., Nonfragile consensus of multiagent systems based on memory sampled-data control, IEEE Trans. Syst. Man Cybern. Syst., 1-9 (2018)
[19] Li, H.; Jing, X.; Lam, H.; Shi, P., Fuzzy sampled-data control for uncertain vehicle suspension systems, IEEE Trans. Cybern., 44, 1111-1126 (2014)
[20] Hetel, L.; Fiter, C.; Omran, H.; Seuret, A.; Fridman, E.; Richard, J.-P.; Niculescu, S. I., Recent developments on the stability of systems with aperiodic sampling: an overview, Automatica, 76, 309-335 (2017) · Zbl 1352.93073
[21] Lee, S. H.; Park, M. J.; Kwon, O. M.; Sakthivel, R., Advanced sampled-data synchronization control for complex dynamical networks with coupling time-varying delays, Inf. Sci., 420, 454-465 (2017) · Zbl 1447.93209
[22] Zhang, X.-M.; Han, Q.-L., Output feedback stabilization of networked control systems with a logic zero-order-hold, Inf. Sci., 381, 78-91 (2017) · Zbl 1432.93276
[23] Peng, C.; Tian, Y.-C., Delay-dependent robust \(\mathcal{H}_\infty\) control for uncertain systems with time-varying delay, Inf. Sci., 179, 3187-3197 (2009) · Zbl 1171.93016
[24] Kim, J.-H., Further improvement of Jensen inequality and application to stability of time-delayed systems, Automatica, 64, 121-125 (2016) · Zbl 1329.93123
[25] Zhang, C.-K.; He, Y.; Jiang, L., Stability analysis of systems with time-varying delay via relaxed integral inequalities, Syst. Control Lett., 92, 52-61 (2016) · Zbl 1338.93290
[26] Park, P.; Ko, J. W.; Jeong, C., Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47, 235-238 (2011) · Zbl 1209.93076
[27] Chen, C.-C.; Sun, Z.-Y., A unified approach to finite-time stabilization of high-order nonlinear systems with an asymmetric output constraint, Automatica, 111, Article 108581 pp. (2020) · Zbl 1430.93186
[28] Liu, K.; Seuret, A., Comparison of bounding methods for stability analysis of systems with time-varying delays, J. Franklin Inst., 354, 2979-2993 (2017) · Zbl 1364.93738
[29] Park, J. H.; Lee, T. H.; Liu, Y.; Chen, J., Dynamic systems with time delays, Stab. Control (2019)
[30] Zhang, C.-K.; He, Y.; Jiang, L.; Wu, M.; Wang, Q.-G., An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay, Automatica, 85, 481-485 (2017) · Zbl 1375.93094
[31] Seuret, A.; Liu, K.; Gouaisbaut, F., Generalized reciprocally convex combination lemmas and its application to time-delay systems, Automatica, 95, 488-493 (2018) · Zbl 1402.93193
[32] Li, H., Sampled-data state estimation for complex dynamical networks with time-varying delay and stochastic sampling, Neurocomputing, 138, 78-85 (2014)
[33] Fang, L.; Ma, L.; Ding, S.; Zhao, D., Finite-time stabilization for a class of high-order stochastic nonlinear systems with an output constraint, Appl. Math. Comput., 358, 63-79 (2019) · Zbl 1428.93115
[34] Wu, X.; Tang, Y.; Zhang, W., Stability analysis of stochastic delayed systems with an application to multi-agent systems, IEEE Trans. Autom. Control, 61, 4143-4149 (2016)
[35] Gao, H.; Wu, J.; Shi, P., Robust sampled-data \(\mathcal{H}_\infty\) control with stochastic sampling, Automatica, 45, 1729-1736 (2009) · Zbl 1184.93039
[36] Dong, H.; Wang, Z.; Ding, S. X.; Gao, H., Event-based \(\mathcal{H}_\infty\) filter design for a class of nonlinear time-varying systems with fading channels and multiplicative noises, IEEE Trans. Signal Process., 63, 3387-3395 (2015) · Zbl 1394.94160
[37] Liang, J.; Wang, Z.; Liu, Y.; Liu, X., State estimation for two-dimensional complex networks with randomly occurring nonlinearities and randomly varying sensor delays, Int. J. Robust Nonlinear Control, 24, 18-38 (2014) · Zbl 1417.93304
[38] Tian, E.; Yue, D.; Peng, C., Reliable control for networked control systems with probabilistic sensors and actuators faults, IET Control Theory, 4, 1478-1488 (2010)
[39] Wang, Y.; Zhou, W.; Luo, J.; Yan, H.; Pu, H.; Peng, Y., Reliable intelligent path following control for a robotic airship against sensor faults, IEEE/ASME Trans. Mechatron., 24, 2572-2582 (2019)
[40] Schenk, K.; Gülbitti, B.; Lunze, J., Cooperative fault-tolerant control of networked control systems, IFAC-PapersOnLine, 51, 570-577 (2018)
[41] Vimal Kumar, S.; Raja, R.; Marshal Anthoni, S.; Cao, J.; Tu, Z., Robust finite-time non-fragile sampled-data control for T-S fuzzy flexible spacecraft model with stochastic actuator faults, Appl. Math. Comput., 321, 483-497 (2018) · Zbl 1426.93164
[42] Manivannan, R.; Samidurai, R.; Cao, J.; Perc, M., Design of resilient reliable dissipativity control for systems with actuator faults and probabilistic time-delay signals via sampled-data approach, IEEE Trans. Syst. Man Cybern. Syst., 1-13 (2018)
[43] Wang, Y.; Karimi, H. R.; Lam, H.; Yan, H., Fuzzy output tracking control and filtering for nonlinear discrete-time descriptor systems under unreliable communication links, IEEE Trans. Cybern., 1-11 (2019)
[44] Wang, Y.; Yang, X.; Yan, H., Reliable fuzzy tracking control of near-space hypersonic vehicle using aperiodic measurement information, IEEE Trans. Ind. Electron., 66, 9439-9447 (2019)
[45] Zhang, W.; Han, Q.-L.; Tang, Y.; Liu, Y., Sampled-data control for a class of linear time-varying systems, Automatica, 103, 126-134 (2019) · Zbl 1415.93169
[46] Tian, E.; Yue, D.; Peng, C., Reliable control for networked control systems with probabilistic actuator fault and random delays, J. Franklin Inst., 347, 1907-1926 (2010) · Zbl 1206.93108
[47] Seuret, A.; Gouaisbaut, F., Hierarchy of LMI conditions for the stability analysis of time-delay systems, Syst. Control Lett., 81, 1-7 (2015) · Zbl 1330.93211
[48] Wang, G.; Chadli, M.; Chen, H.; Zhou, Z., Event-triggered control for active vehicle suspension systems with network-induced delays, J. Franklin Inst., 356, 147-172 (2019) · Zbl 1405.93156
[49] Li, H.; Jing, X.; Karimi, H. R., Output-feedback-based H_∞)control for vehicle suspension systems with control delay, IEEE Trans. Ind. Electron., 61, 436-446 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.