×

Neural network-based finite-time adaptive tracking control of nonstrict-feedback nonlinear systems with actuator failures. (English) Zbl 1478.93312

Summary: In this paper, the finite-time adaptive fault-tolerant tracking control for nonstrict-feedback nonlinear systems (NSFNSs) is investigated. To avoid the problem of “complexity explosion”, a novel finite-time command filter is introduced to generate command signals and their derivatives. The fractional order error compensation mechanism (ECM) is designed to quickly compensate the effect of filter error. By combining the approximation abilities of neural networks and command filtered backstepping (CFB) approach, a finite-time adaptive control strategy is established. It guarantees that the output tracking error approaches to a sufficiently small region of the original point within finite-time, and all signals of the closed-loop system are finite-time semi-globally uniformly ultimately bounded (SGUUB). Finally, two simulation examples are supplied to verify the effectiveness of the proposed control method.

MSC:

93C40 Adaptive control/observation systems
93D40 Finite-time stability
93B52 Feedback control
93C10 Nonlinear systems in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chen, B.; Liu, K.; Liu, X.; Shi, P.; Lin, C.; Zhang, H., Approximation-based adaptive neural control design for a class of nonlinear systems, IEEE Trans. Cybern., 44, 5, 610-619 (2014)
[2] Chen, B.; Liu, X.; Ge, S. S.; Lin, C., Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach, IEEE Trans. Fuzzy Syst., 20, 6, 1012-1021 (2012)
[3] Chen, B.; Liu, X.; Liu, K.; Lin, C., Direct adaptive fuzzy control of nonlinear strict-feedback systems, Automatica, 45, 6, 1530-1535 (2009) · Zbl 1166.93341
[4] Chen, M.; Jiang, B.; Cui, R., Actuator fault-tolerant control of ocean surface vessels with input saturation, Int. J. Robust Nonlinear Control, 26, 3, 542-564 (2016) · Zbl 1332.93088
[5] Dong, W.; Farrell, J. A.; Polycarpou, M. M.; Djapic, V.; Sharma, M., Command filtered adaptive backstepping, IEEE Trans. Control Syst. Technol., 20, 3, 566-580 (2012)
[6] Farrell, J.; Polycarpou, M.; Sharma, M.; Dong, W., Command filtered backstepping, IEEE Trans. Autom. Control, 54, 6, 1391-1395 (2009) · Zbl 1367.93382
[7] Hardy, G. H.; Littlewood, J. E.; Pólya, G., Inequalities (1952), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0047.05302
[8] Hou, Y.; Tong, S., Command filter-based adaptive fuzzy backstepping control for a class of switched nonlinear systems, Fuzzy Sets Syst., 314, 46-60 (2017) · Zbl 1368.93321
[9] Jiang, Z., A combined backstepping and small-gain approach to adaptive output feedback control, Automatica, 35, 6, 1131-1139 (1999) · Zbl 0932.93045
[10] Krstic, M.; Kanellakopoulos, I.; Kokotovic, P. V., Nonlinear and Adaptive Control Design (1995), Wiley: Wiley New York · Zbl 0763.93043
[11] Li, H.; Bai, L.; Zhou, Q.; Lu, R.; Wang, L., Adaptive fuzzy control of stochastic nonstrict-feedback nonlinear systems with input saturation, IEEE Trans. Syst. Man Cybern.: Syst., 47, 8, 2185-2197 (2017)
[12] Li, Y., Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems, Automatica, 106, 117-123 (2019) · Zbl 1429.93181
[13] Li, Y.; Li, K.; Tong, S., Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO nonstrict feedback systems, IEEE Trans. Fuzzy Syst., 27, 1, 96-110 (2019)
[14] Liu, Y.; Liu, X.; Jing, Y., Adaptive neural networks finite-time tracking control for non-strict feedback systems via prescribed performance, Inf. Sci., 468, 29-46 (2018) · Zbl 1448.93285
[15] Ma, J.; Xu, S.; Cui, G.; Chen, W.; Zhang, Z., Adaptive backstepping control for strict-feedback non-linear systems with input delay and disturbances, IET Control Theory Appl., 13, 4, 506-516 (2018) · Zbl 1434.93040
[16] Niu, B.; Liu, Y.; Zong, G.; Han, Z.; Fu, J., Command filter-based adaptive neural tracking controller design for uncertain switched nonlinear output-constrained systems, IEEE Trans. Cybern., 47, 10, 3160-3171 (2017)
[17] Polycarpou, M. M., Stable adaptive neural control scheme for nonlinear systems, IEEE Trans. Autom. Control, 41, 3, 447-451 (1996) · Zbl 0846.93060
[18] Qian, C.; Lin, W., A continuous feedback approach to global strong stabilization of nonlinear systems, IEEE Trans. Autom. Control, 46, 7, 1061-1079 (2001) · Zbl 1012.93053
[19] Shen, Q.; Shi, P., Distributed command filtered backstepping consensus tracking control of nonlinear multiple-agent systems in strict-feedback form, Automatica, 53, 120-124 (2015) · Zbl 1371.93019
[20] Sun, Y.; Chen, B.; Lin, C.; Wang, H., Finite-time adaptive control for a class of nonlinear systems with nonstrict feedback structure, IEEE Trans. Cybern., 48, 10, 2774-2782 (2018)
[21] Swaroop, D.; Hedrick, J. K.; Yip, P. P.; Gerdes, J. C., Dynamic surface control for a class of nonlinear systems, IEEE Trans. Autom. Control, 45, 10, 1893-1899 (2000) · Zbl 0991.93041
[22] Tang, X.; Tao, G.; Joshi, S. M., Adaptive actuator failure compensation for nonlinear MIMO systems with an aircraft control application, Automatica, 43, 11, 1869-1883 (2007) · Zbl 1132.93331
[23] Tong, S.; Li, Y., Observer-based fuzzy adaptive control for strict-feedback nonlinear systems, Fuzzy Sets Syst., 160, 12, 1749-1764 (2009) · Zbl 1175.93135
[24] Tong, S.; Li, Y.; Sui, S., Adaptive fuzzy tracking control design for SISO uncertain nonstrict feedback nonlinear systems, IEEE Trans. Fuzzy Syst., 24, 6, 1441-1454 (2016)
[25] Wang, F.; Chen, B.; Lin, C.; Li, X., Distributed adaptive neural control for stochastic nonlinear multiagent systems, IEEE Trans. Cybern., 47, 7, 1795-1803 (2017)
[26] Wang, H.; Liu, S.; Yang, X., Adaptive neural control for non-strict-feedback nonlinear systems with input delay, Inf. Sci., 514, 605-616 (2020) · Zbl 1461.93408
[27] Wang, H.; Liu, X.; Liu, P. X.; Li, S., Robust adaptive fuzzy fault-tolerant control for a class of non-lower-triangular nonlinear systems with actuator failures, Inf. Sci., 336, 60-74 (2016) · Zbl 1394.93165
[28] Wang, L., Adaptive Fuzzy Systems and Control, Design and Stability Analysis (1994), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ
[29] Wang, L.; Basin, M. V.; Li, H.; Lu, R., Observer-based composite adaptive fuzzy control for nonstrict-feedback systems with actuator failures, IEEE Trans. Fuzzy Syst., 26, 4, 2336-2347 (2018)
[30] Wang, X.; Chen, Z.; Yang, G., Finite-time-convergent differentiator based on singular perturbation technique, IEEE Trans. Autom. Control, 52, 9, 1731-1737 (2007) · Zbl 1366.93189
[31] Wu, C.; Liu, J.; Xiong, Y.; Wu, L., Observer-based adaptive fault-tolerant tracking control of nonlinear nonstrict-feedback systems, IEEE Trans. Neural Networks Learn. Syst., 29, 7, 3022-3033 (2018)
[32] Xu, B.; Shi, Z.; Sun, F.; He, W., Barrier Lyapunov function based learning control of hypersonic flight vehicle with AOA constraint and actuator faults, IEEE Trans. Cybern., 49, 3, 1047-1057 (2018)
[33] Xu, Y.; Tong, S.; Li, Y., Adaptive fuzzy fault-tolerant control of static var compensator based on dynamic surface control technique, Nonlinear Dyn., 73, 3, 2013-2023 (2013)
[34] Xu, Y.; Zhou, Q.; Li, T.; Liang, H., Event-triggered neural control for non-strict-feedback systems with actuator failures, IET Control Theory Appl., 13, 2, 171-182 (2019) · Zbl 1434.93043
[35] Ye, D.; Yang, G., Adaptive fault-tolerant tracking control against actuator faults with application to flight control, IEEE Trans. Control Syst. Technol., 14, 6, 1088-1096 (2006)
[36] Yan, Z.; Huang, X.; Cao, J., Variable-sampling-period dependent global stabilization of delayed memristive neural networks via refined switching event-triggered control, Science China Inf. Sci. (2019)
[37] Yang, Q.; Ge, S. S.; Sun, Y., Adaptive actuator fault tolerant control for uncertain nonlinear systems with multiple actuators, Automatica, 60, 92-99 (2015) · Zbl 1331.93117
[38] Yu, J.; Shi, P.; Dong, W.; Yu, H., Observer and command-filter-based adaptive fuzzy output feedback control of uncertain nonlinear systems, IEEE Trans. Industr. Electron., 62, 9, 5962-5970 (2015)
[39] Yu, J.; Shi, P.; Zhao, L., Finite-time command filtered backstepping control for a class of nonlinear systems, Automatica, 92, 173-180 (2018) · Zbl 1388.93047
[40] Yu, J.; Zhao, L.; Yu, H.; Lin, C., Barrier Lyapunov functions-based command filtered output feedback control for full-state constrained nonlinear systems, Automatica, 105, 71-79 (2019) · Zbl 1429.93395
[41] Yu, J.; Zhao, L.; Yu, H.; Lin, C.; Dong, W., Fuzzy finite-time command filtered control of nonlinear systems with input saturation, IEEE Trans. Cybern., 48, 8, 2378-2387 (2018)
[42] Zhao, L.; Yu, J.; Lin, C., Distributed adaptive output consensus tracking of nonlinear multi-agent systems via state observer and command filtered backstepping, Inf. Sci., 478, 355-374 (2019) · Zbl 1451.93367
[43] Zhao, L.; Yu, J.; Lin, C.; Ma, Y., Adaptive neural consensus tracking for nonlinear multiagent systems using finite-time command filtered backstepping, IEEE Trans. Syst. Man Cybern.: Syst., 48, 11, 2003-2012 (2018)
[44] Zhou, J.; Wen, C., Adaptive Backstepping Control of Uncertain Systems: Nonsmooth Nonlinearities, Interactions or Time-Variations (2008), Springer-Verlag: Springer-Verlag Berlin · Zbl 1146.93002
[45] Zhou, Q.; Shi, P.; Xu, S.; Li, H., Observer-based adaptive neural network control for nonlinear stochastic systems with time delay, IEEE Trans. Neural Networks Learn. Syst., 24, 1, 71-80 (2012)
[46] Zhou, Q.; Wang, L.; Wu, C.; Li, H.; Du, H., Adaptive fuzzy control for nonstrict-feedback systems with input saturation and output constraint, IEEE Trans. Syst. Man Cybern.: Syst., 47, 1, 1-12 (2017)
[47] Zhou, Y.; Xia, J.; Shen, H.; Zhou, J.; Wang, Z., Extended dissipative learning of time-delay recurrent neural networks, J. Franklin Inst., 356, 15, 8745-8769 (2019) · Zbl 1423.93119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.