×

Adaptive fault estimation for cyber-physical systems with intermittent DoS attacks. (English) Zbl 1478.93338

Summary: This paper is concerned with the problem of fault estimation (FE) for cyber-physical systems (CPSs) modeled by interconnected systems. Under denial-of-service (DoS) attacks, the measurement transmission over the communication network is interrupted, which leads to the infeasibility of the existing FE methods. To overcome this difficulty, a novel switching-type FE scheme is proposed. More specifically, a sequence of adaptive observers and an algorithm are constructed to provide the estimates with improved estimation accuracy, and the observer gain matrices are switched to be zero to discard the outdated measurements under DoS attacks. Therefore, the estimation performance is effectively enhanced in the normal case, and a quantitative description of the estimation error divergence rate is given in the attack status. Compared with the existing results, the interconnections among subsystems are fully considered to improve the estimation accuracy, and in the disturbance-free case, it is proven that the mean sequence of the estimate errors converges to zero. Finally, some simulation results are provide to verify the theoretical findings.

MSC:

93C40 Adaptive control/observation systems
93B70 Networked control
93C83 Control/observation systems involving computers (process control, etc.)
93C05 Linear systems in control theory
68M25 Computer security
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alippi, C.; Ntalampiras, S.; Roveri, M., Model-free fault detection and isolation in large-scale cyber-physical systems, IEEE Trans. Emerg. Topics Comput. Intell., 1, 1, 61-71 (2017)
[2] An, L. W.; Yang, G. H., Decentralized adaptive fuzzy secure control for nonlinear uncertain interconnected systems against intermittent DoS attacks, IEEE Trans. Cybern., 49, 3, 827-838 (2019)
[3] Ao, W.; Song, Y. D.; Wen, C. Y., Distributed secure state estimation and control for CPSs under sensor attacks, IEEE Trans. Cybern., 50, 1, 259-269 (2020)
[4] B. Chen, D.W.C. Ho, W.A. Zhang, L. Yu, Distributed dimensionality reduction fusion estimation for cyber-physical systems under DoS attacks, IEEE Trans. Syst., Man, Cybern., Syst. 49 (2) (2019) 455-468.
[5] Chen, W.; Ding, D. R.; Dong, H. L.; Wei, G. L., Distributed resilient filtering for power systems subject to denial-of-service attacks, IEEE Trans. Syst., Man, Cybern., Syst., 49, 8, 1688-1697 (2019)
[6] Deng, C.; Wen, C. Y., Cooperative fault-tolerant output regulation of heterogeneous linear multi-agent systems under denial-of-service attacks, IEEE Trans. Control Netw. Syst. (2020)
[7] Ding, D. R.; Wang, Z. D.; Han, Q. L.; Wei, G. L., Security control for discrete-time stochastic nonlinear systems subject to deception attacks, IEEE Trans. Syst., Man, Cybern., Syst., 48, 5, 779-789 (2018)
[8] Ding, D. R.; Wang, Z. D.; Han, Q. L., A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks, IEEE Trans. Autom. Control, 65, 4, 1792-1799 (2020) · Zbl 07256303
[9] S. Feng, P. Tesi, C. De Persis, Towards stabilization of distributed systems under denial-of-service, in: Proc. 56th IEEE Conf. Decis. Control, Melbourne, VIC, Australia, 2017, pp. 5360-5365.
[10] Ge, X. H.; Han, Q. L.; Zhong, M. Y.; Zhang, X. M., Distributed Krein space-based attack detection over sensor networks under deception attacks, Automatica, 109 (2019) · Zbl 1429.93135
[11] M. Guinaldo, D.V. Dimarogonas, K.H. Johansson, J. \(S \acute{a}\) nchez, S. Dormido, Distributed event-based control for interconnected linear systems, in: Proc. 50th IEEE Conf. Decision Control &s066amp;)Eur. Control Conf., 2011, pp. 2553-2558.
[12] Harirchi, F.; Ozay, N., Guaranteed model-based fault detection in cyber-physical systems: a model invalidation approach, Automatica, 93, 476-488 (2018) · Zbl 1400.93129
[13] Hou, N.; Wang, Z. D.; Ho, D. W.C.; Dong, H. L., Robust partial-nodes-based state estimation for complex networks under deception attacks, IEEE Trans. Cybern., 50, 6, 2793-2802 (2020)
[14] Hu, S. L.; Yue, D.; Han, Q. L.; Xie, X. P.; Chen, X. L.; Dou, C. X., Observer-based event-triggered control for networked linear systems subject to denial-of-service attacks, IEEE Trans. Cybern., 50, 5, 1952-1964 (2020)
[15] Huang, S. J.; Zhang, D. Q.; Guo, L. D.; Wu, L. B., Lower triangle factor based fault estimation and fault tolerant control for fuzzy systems, IEEE Trans. Fuzzy Syst. (2019)
[16] Huang, S. J.; Zhang, D. Q.; Guo, L. D.; Wu, L. B., Convergent estimation mechanism design for nonlinear fuzzy systems with faults, IEEE Trans. Cybern., 50, 5, 2176-2185 (2020)
[17] Huang, S. J.; Zhang, D. Q.; Guo, L. D.; Wu, L. B., Convergent fault estimation for linear systems with faults and disturbances, IEEE Trans. Autom. Control, 63, 3, 888-893 (2018) · Zbl 1390.93234
[18] Li, X. J.; Yan, J. J.; Yang, G. H., Adaptive fault estimation for T-S fuzzy interconnected systems based on persistent excitation condition via reference signals, IEEE Trans. Cybern., 49, 8, 2822-2834 (2019)
[19] Li, Y. G.; Yang, G. H., Optimal stealthy false data injection attacks in cyber-physical systems, Inf. Sci., 481, 474-490 (2019) · Zbl 1451.94030
[20] Li, Y. Z.; Shi, L.; Cheng, P.; Chen, J. M.; Quevedo, D. E., Jamming attacks on remote state estimation in cyber-physical systems: a game-theoretic approach, IEEE Trans. Autom. Control, 60, 10, 2831-2836 (2015) · Zbl 1360.93674
[21] Li, Y. X.; Yang, G. H., Observer-based fuzzy adaptive event-triggered control co-design for a class of uncertain nonlinear systems, IEEE Trans. Fuzzy Syst., 26, 3, 1589-1599 (2018)
[22] Liang, H. J.; Guo, X. Y.; Pan, Y. N.; Huang, T. W., Event-triggered fuzzy bipartite tracking control for network systems based on distributed reduced-order observers, IEEE Trans. Fuzzy Syst. (2020)
[23] Long, M.; Wu, C. H.; Hung, J. Y., Denial of service attacks on network-based control systems: impact and mitigation, IEEE Trans. Ind. Inf., 1, 2, 85-96 (2005)
[24] Lu, A. Y.; Yang, G. H., Input-to-state stabilizing control for cyber-physical systems with multiple transmission channels under denial of service, IEEE Trans. Autom. Control, 63, 6, 1813-1820 (2018) · Zbl 1395.93483
[25] F. Pasqualetti, F. D \(\ddot{o}\) rfler, F. Bullo, Attack detection and identification in cyber-physical systems, IEEE Trans. Autom. Control 58 (11) (2013) 2715-2729. · Zbl 1369.93675
[26] De Persis, C.; Tesi, P., Input-to-state stabilizing control under denial-of-service, IEEE Trans. Autom. Control, 60, 11, 2930-2944 (2015) · Zbl 1360.93629
[27] De Persis, C.; Tesi, P., Networked control of nonlinear systems under Denial-of-Service, Syst. Control Lett., 96, 124-131 (2016) · Zbl 1347.93143
[28] Reppa, V.; Polycarpou, M. M.; Panayiotou, C. G., Distributed sensor fault diagnosis for a network of interconnected cyber-physical systems, IEEE Trans. Control Network Syst., 2, 1, 11-23 (2015) · Zbl 1370.93030
[29] Rodrigues, M.; Hamdi, H.; Theilliol, D.; Mechmeche, C.; BenHadj Braiek, N., Actuator fault estimation based adaptive polytopic observer for a class of LPV descriptor systems, Int. J. Robust Nonlinear Control, 25, 5, 673-688 (2015) · Zbl 1306.93067
[30] Su, L.; Ye, D., A cooperative detection and compensation mechanism against denial-of-service attack for cyber-physical systems, Inf. Sci., 444, 122-134 (2018)
[31] Sun, Y. C.; Yang, G. H., Event-triggered resilient control for cyber-physical systems under asynchronous DoS attacks, Inf. Sci., 465, 340-352 (2018) · Zbl 1448.93212
[32] Tague, P.; Li, M. Y.; Poovendran, R., Mitigation of control channel jamming under node capture attacks, IEEE Trans. Mobile Comput., 8, 9, 1221-1234 (2009)
[33] Teixeira, A.; Shames, I.; Sandberg, H.; Johansson, K. H., A secure control framework for resource-limited adversaries, Automatica, 51, 135-148 (2015) · Zbl 1309.93020
[34] Tong, S. C.; Huo, B. Y.; Li, Y. M., Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures, IEEE Trans. Fuzzy Syst., 22, 1, 1-15 (2014)
[35] Xiao, S. Y.; Han, Q. L.; Ge, X. H.; Zhang, Y. J., Secure distributed finite-time filtering for positive systems over sensor networks under deception attacks, IEEE Trans. Cybern., 50, 3, 1220-1229 (2020)
[36] Xu, W. Y.; Ma, K.; Trappe, W.; Zhang, Y. Y., Jamming sensor networks: attack and defense strategies, IEEE Network, 20, 3, 41-47 (2006)
[37] Yan, J. J.; Yang, G. H.; Li, X. J., Adaptive observer-based fault-tolerant tracking control for T-S fuzzy systems with mismatched faults, IEEE Trans. Fuzzy Syst., 28, 1, 134-147 (2020)
[38] J.J. Yan, G.H. Yang, X.J. Li, Adaptive fault-tolerant compensation control for T-S fuzzy systems with mismatched parameter uncertainties, IEEE Trans. Syst., Man, Cybern., Syst. (2018) DOI: 10.1109/TSMC.2018. 2854630.
[39] J.J. Yan, G.H. Yang, Secure state estimation for nonlinear cyber-physical systems with multiple transmission channels under intermittent DoS attacks, Submitted to Information Sciences.
[40] Yuan, Y.; Yuan, H. H.; Guo, L.; Yang, H. J.; Sun, S. L., Resilient control of networked control system under DoS attacks: a unified game approach, IEEE Trans. Ind. Inf., 12, 5, 1786-1794 (2016)
[41] W.W. Yu, G.H. Wen, X.H. Yu, Z.J. Wu, J.H. L \(\ddot{u} \), Bridging the gap between complex networks and smart grids, J. Control Decision 1 (1) (2014) 102-114.
[42] Zhang, H.; Peng, C.; Shi, L.; Chen, J. M., Optimal denial-of-service attack scheduling with energy constraint, IEEE Trans. Autom. Control, 60, 11, 3023-3028 (2015) · Zbl 1360.68302
[43] Zhang, K.; Jiang, B.; Chen, M.; Yan, X. G., Distributed fault estimation and fault-tolerant control of interconnected systems, IEEE Trans. Cybern. (2019)
[44] Zhang, X. M.; Han, Q. L.; Ge, X. H.; Ding, D. R.; Ding, L.; Yue, D.; Peng, C., Networked control systems: a survey of trends and techniques, IEEE/CAA J. Autom. Sin., 7, 1, 1-17 (2020)
[45] Zhang, X. M.; Han, Q. L.; Ge, X. H.; Ding, L., Resilient control design based on a sampled-data model for a class of networked control systems under denial-of-service attacks, IEEE Trans. Cybern. (2019)
[46] Zhou, J.; Chen, B.; Yu, L., Intermediate-variable-based estimation for FDI attacks in cyber-physical systems, IEEE Trans. Circ. Syst. II Express Briefs (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.