×

Design of fuzzy system-fuzzy neural network-backstepping control for complex robot system. (English) Zbl 1478.93357

Summary: In this study, the control problem of complex robot system with uncertainties and disturbances is addressed. Fuzzy system-fuzzy neural network-backstepping control (FS-FNN-BSC) system is proposed, which can guarantee the accurate, stable and efficient control. First, the general dynamics model of robot is introduced briefly. Then, the design procedure of backstepping control (BSC) technique is presented, to make the best of the advantages of fuzzy system (FS) and fuzzy neural network (FNN) and compromise the accuracy and efficiency, the FS is adopted to approximate the modeling information, and the FNN is utilized to approximate and predict the non-modeling information, and the FS-FNN-BSC system is constructed. Moreover, based on the Lyapunov stability theorem, the stability of the FS-FNN-BSC is proved. To illustrate the correctness, practicality and generality of the proposed control method, the FS-FNN-BSC system is applied to the series robot (KUKA robot) and the parallel robot (Delta robot). And the superiority of the proposed FS-FNN-BSC strategy is highlighted by quantitative comparison with the existing intelligent control methods.

MSC:

93C42 Fuzzy control/observation systems
93C85 Automated systems (robots, etc.) in control theory
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yin, X.; Pan, L., Direct adaptive robust tracking control for 6 DOF industrial robot with enhanced accuracy, ISA Trans., 72, 178 (2018)
[2] Zubizarreta, A.; Larrea, M.; Irigoyen, E.; Cabanes, I.; Portillo, E., Real time direct kinematic problem computation of the 3PRS robot using neural networks, Neurocomputing, 271 (2017)
[3] Wang, T.; Tong, S.; Yi, J.; Li, H., Direct inverse control of cable-driven parallel system based on type-2 fuzzy systems, Inf. Sci., 310, 1-15 (2015) · Zbl 1390.93493
[4] Wang, F.; Liu, Z.; Chen, C. L.P.; Zhang, Y., Adaptive neural network-based visual servoing control for manipulator with unknown output nonlinearities, Inf. Sci., 451-452, 16-33 (2018) · Zbl 1448.93172
[5] Han, S. I.; Lee, J., Finite-time sliding surface constrained control for a robot manipulator with an unknown deadzone and disturbance, ISA Trans., 65, 307-318 (2016)
[6] Lin, D.; Wang, X.; Nian, F.; Zhang, Y., Dynamic fuzzy neural networks modeling and adaptive backstepping tracking control of uncertain chaotic systems, Neurocomputing, 73, 2873-2881 (2010)
[7] Xu, D.; Song, X.; Yan, W.; Jiang, B., Model-free adaptive command-filtered-backstepping sliding mode control for discrete-time high-order nonlinear systems, Inf. Sci., 485, 141-153 (2019) · Zbl 1453.93039
[8] Baigzadehnoe, B.; Rahmani, Z.; Khosravi, A.; Rezaie, B., On position/force tracking control problem of cooperative robot manipulators using adaptive fuzzy backstepping approach, ISA Trans., 70, 432 (2017)
[9] Huang, A. C.; Chen, Y. C., Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties, Contr. Syst. Technol. IEEE Trans., 12, 770-775 (2004)
[10] Chien, M. C.; Huang, A. C., Adaptive control for flexible-joint electrically driven robot with time-varying uncertainties, IEEE Trans. Ind. Electron., 54, 1032-1038 (2007)
[11] Dong, W.; Farrell, J. A.; Polycarpou, M. M.; Djapic, V.; Sharma, M., Command filtered adaptive backstepping, IEEE Trans. Control Syst. Technol., 20, 566-580 (2012)
[12] Petit, F.; Daasch, A.; Albu-Schäffer, A., Backstepping control of variable stiffness robots, IEEE Trans. Control Syst. Technol., 23, 2195-2202 (2015)
[13] Zheng, K.; Hu, Y.; Wu, B., Model-free development of control systems for a multi-degree-of-freedom robot, Mechatronics, 53, 262-276 (2018)
[14] Zheng, K.; Zhang, Q., Comprehensive analysis of the position error and vibration characteristics of Delta robot, Adv. Rob., 30, 1322-1340 (2016)
[15] Zheng, K.; Hu, Y.; Wu, B.; Guo, X., New trajectory control method for robot with flexible bar-groups based on workspace lattices, Rob. Auton. Syst., 111, 44-61 (2019)
[16] Son, N. N.; Cao, V. K.; Anh, H. P.H., A novel adaptive feed-forward - PID controller of a SCARA parallel robot using pneumatic artificial muscle actuator based on neural network and modified differential evolution algorithm, Rob. Auton. Syst., 96 (2017)
[17] Hwang, C. L.; Chang, L. J., Internet-Based Smart-Space Navigation of a Car-Like Wheeled Robot Using Fuzzy-Neural Adaptive Control (2008), IEEE Press
[18] H. Wei, Y. Dong, Adaptive Fuzzy Neural Network Control for a Constrained Robot Using Impedance Learning, IEEE Transactions on Neural Networks & Learning Systems, PP (2017) 1-13.
[19] Fateh, M. M.; Azargoshasb, S.; Khorashadizadeh, S., Model-free discrete control for robot manipulators using a fuzzy estimator, Compel. Int. J. Comput. Math. Electr. Electron. Eng., 33, 1051-1067 (2014) · Zbl 1358.93121
[20] Fateh, M. M.; Khorashadizadeh, S., Robust control of electrically driven robots by adaptive fuzzy estimation of uncertainty, Nonlinear Dyn., 69, 1465-1477 (2012) · Zbl 1253.93086
[21] Huang, S. J.; Lee, J. S., A stable self-organizing fuzzy controller for robotic motion control, IEEE Trans. Ind. Electron., 47, 421-428 (2002)
[22] Meza, J. L.; Santibanez, V.; Soto, R.; Llama, M. A., Fuzzy Self-Tuning PID Semiglobal Regulator for Robot Manipulators, IEEE Trans. Ind. Electron., 59, 2709-2717 (2012)
[23] Gaxiola, F.; Melin, P.; Valdez, F.; Castro, J. R.; Castillo, O., Optimization of type-2 fuzzy weights in backpropagation learning for neural networks using GAs and PSO, Appl. Soft Comput., 38, 860-871 (2015)
[24] Gaxiola, F.; Melin, P.; Valdez, F.; Castillo, O.; Castro, J., Comparison of T-norms and S-norms for interval type-2 fuzzy numbers in weight adjustment for neural networks, Information, 8, 114 (2017)
[25] Valdez, F.; Vazquez, J. C.; Gaxiola, F., Fuzzy dynamic parameter adaptation in ACO and PSO for designing fuzzy controllers: The cases of water level and temperature control, Adv. Fuzzy Syst., 2018, 1-19 (2018)
[26] E. Ontiveros, Comparative analysis of noise robustness of type 2 fuzzy logic controllers, Kybernetika, (2018). · Zbl 1449.93163
[27] Castillo, O.; Cervantes, L.; Soria, J.; Sanchez, M.; Castro, J. R., A generalized type-2 fuzzy granular approach with applications to aerospace, Inf. Sci., 354, 165-177 (2016)
[28] Castillo, O.; Amador-Angulo, L.; Castro, J. R.; Garcia-Valdez, M., A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems, Inf. Sci., 354, 257-274 (2016)
[29] Cervantes, L.; Castillo, O., Type-2 fuzzy logic aggregation of multiple fuzzy controllers for airplane flight control, Inf. Sci., 324, 247-256 (2015)
[30] Castillo, O.; Aguilar, L.; Cázarez, N.; Cárdenas, S., Systematic design of a stable type-2 fuzzy logic controller, Appl. Soft Comput., 8, 1274-1279 (2008)
[31] Cazarez-Castro, N. R.; Aguilar, L. T.; Castillo, O., Designing type-1 and type-2 fuzzy logic controllers via fuzzy lyapunov synthesis for nonsmooth mechanical systems, Eng. Appl. Artif. Intell., 25, 971-979 (2012)
[32] Sanchez, M. A.; Castillo, O.; Castro, J. R., Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems, Expert Syst. Appl., 42, 5904-5914 (2015)
[33] Chen, B.; Liu, X. P.; Ge, S. S.; Lin, C., Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach, IEEE Trans. Fuzzy Syst., 20, 1012-1021 (2012)
[34] Zhou, Q.; Shi, P.; Lu, J.; Xu, S., Adaptive output-feedback fuzzy tracking control for a class of nonlinear systems, IEEE Trans. Fuzzy Syst., 19, 972-982 (2011)
[35] Azimi, M. M.; Koofigar, H. R., Adaptive fuzzy backstepping controller design for uncertain underactuated robotic systems, Nonlinear Dyn., 79, 1457-1468 (2015) · Zbl 1345.93084
[36] Wai, R. J.; Muthusamy, R., Design of fuzzy-neural-network-inherited backstepping control for robot manipulator including actuator dynamics, IEEE Trans. Fuzzy Syst., 22, 709-722 (2014)
[37] Rong, H. J.; Yang, Z. X.; Wong, P. K.; Chi, M. V.; Zhao, G. S., A novel meta-cognitive fuzzy-neural model with backstepping strategy for adaptive control of uncertain nonlinear systems, Neurocomputing, 230, 332-344 (2017)
[38] Chen, C. S., Dynamic structure neural-fuzzy networks for robust adaptive control of robot manipulators, IEEE Trans. Ind. Electron., 55, 3402-3414 (2008)
[39] Amer, A. F.; Sallam, E. A.; Elawady, W. M., Adaptive fuzzy sliding mode control using supervisory fuzzy control for 3 DOF planar robot manipulators, Appl. Soft Comput., 11, 4943-4953 (2011)
[40] Kumar, A.; Kumar, V., Evolving an interval type-2 fuzzy PID controller for the redundant robotic manipulator, Expert Syst. Appl., 73, 161-177 (2017)
[41] Tong, S.; Li, Y.; Shi, P., Fuzzy adaptive backstepping robust control for SISO nonlinear system with dynamic uncertainties, Inf. Sci., 179, 1319-1332 (2009) · Zbl 1156.93357
[42] Bose, B. K., Expert system, fuzzy logic, and neural network applications in power electronics and motion control, Proc. IEEE, 82, 1303-1323 (1994)
[43] Li, Z.; Su, C.-Y.; Li, G.; Su, H., Fuzzy Approximation-Based Adaptive Backstepping Control of an Exoskeleton for Human Upper Limbs, IEEE Trans. Fuzzy Syst., 23, 555-566 (2015)
[44] Mohammadia, A.; Tavakolib∗∗, H. J. Marquezb, F. Hashemzadehb,, M., Nonlinear disturbance observer design for robotic manipulators, Control Eng. Pract., 21, 253-267 (2013)
[45] Fang, J. H.; Guo, F.; Chen, Z.; Wei, J. H., Improved sliding-mode control for servo-solenoid valve with novel switching surface under acceleration and jerk constraints, Mechatronics, 43, 66-75 (2017)
[46] Liu, H.; Cheng, R.; Zhu, K.; Ge, H., The study for continuum model considering traffic jerk effect, Nonlinear Dyn., 83, 57-64 (2016)
[47] Chen, S. L.; Li, X.; Teo, C. S.; Tan, K. K., Composite jerk feedforward and disturbance observer for robust tracking of flexible systems ☆, Automatica, 80, 253-260 (2017) · Zbl 1370.93093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.