×

Fixed-time adaptive fuzzy control for uncertain strict feedback switched systems. (English) Zbl 1478.93606

Summary: This paper considers the problem of fuzzy logic adaptive fixed-time control for nonlinear switched system. Different from existing research results on fixed-time control, the system functions are completely uncertain in this paper. The approximation error will cause Lyapunov function not to be negative definite. To address this problem, a new criterion of fixed-time stability is developed at first. Based on this fixed-time theory, a fuzzy logic control method is proposed by using backstepping technique. The proposed adaptive laws in this paper do not satisfy a series of linear differential equations but nonlinear ones. Simulation results verify the feasibility of presented algorithms.

MSC:

93D40 Finite-time stability
93C40 Adaptive control/observation systems
93C42 Fuzzy control/observation systems
93B52 Feedback control
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chen, B.; Liu, X.; Liu, K.; Lin, C., Direct adaptive fuzzy control of nonlinear strict-feedback systems, Automatica, 45, 6, 1530-1535 (2009) · Zbl 1166.93341
[2] Zhang, J.; Shi, P.; Xia, Y., Robust adaptive sliding-mode control for fuzzy systems with mismatched uncertainties, IEEE Trans. Fuzzy Syst., 18, 4, 700-711 (2010)
[3] Xia, Y.; Yang, H.; Shi, P.; Fu, M., Constrained infinite-horizon model predictive control for fuzzy-discrete-time systems, IEEE Trans. Fuzzy Syst., 18, 2, 429-436 (2010)
[4] Liu, Z.; Lai, G.; Zhang, Y.; Chen, X.; Chen, C. L.P., Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis, IEEE Trans. Neural Netw. Learn. Syst., 25, 12, 2129-2140 (2014)
[5] Chowdhary, G.; Kingravi, H. A.; How, J. P.; Vela, P. A., Bayesian nonparametric adaptive control using Gaussian processes, IEEE Trans. Neural Netw. Learn. Syst, 26, 3, 537-550 (2015)
[6] Ni, J. K.; Liu, L.; He, W.; Liu, C. X., Adaptive dynamic surface neural network control for nonstrict-feedback uncertain nonlinear systems with constraints, Nonlinear Dyn., 94, 1, 165-184 (2018) · Zbl 1412.93081
[7] Sun, Y. M.; Chen, B.; Lin, C.; Wang, H. H., Finite-time adaptive control for a class of nonlinear systems with nonstrict feedback structure, IEEE Trans. Cybern., 48, 10, 2774-2782 (2018)
[8] Chen, B.; Zhang, H.; Lin, C., Observer-based adaptive neural network control for nonlinear systems in nonstrict-feedback form, IEEE Trans. Neural Networks Learn. Syst., 27, 1, 89-97 (2016)
[9] Chen, B.; Liu, X. P.; Lin, C., Observer and adaptive fuzzy control design for nonlinear strict-feedback systems with unknown virtual control coefficients, IEEE Trans. Fuzzy Syst., 26, 3, 1732-1742 (2018)
[10] Zhou, Q.; Shi, P.; Xu, S.; Li, H., Observer-based adaptive neural network control for nonlinear stochastic systems with time delay, IEEE Trans. Neural Netw. Learn. Syst., 24, 1, 71-80 (2013)
[11] Sun, Y. M.; Chen, B.; Lin, C.; Wang, H. H.; Zhou, S. W., Adaptive neural control for a class of stochastic nonlinear systems by backstepping approach, Inf. Sci., 369, 748-764 (2016) · Zbl 1429.93188
[12] Yu, S. H.; Yu, X. H.; Shirinzadeh, B.; Man, Z. H., Continuous finite-time control for robotic manipulators with terminal sliding mode, Automatica, 41, 11, 1957-1964 (2005) · Zbl 1125.93423
[13] Huang, Y.; Jia, Y. M., Adaptive finite-time 6-dof tracking control for spacecraft fly around with input saturation and state constraints, IEEE Trans. Aerosp. Electron. Syst., 55, 6, 3259-3272 (2019)
[14] K. Eliker, S. Grouni, M.d Tadjine, W.D. Zhang, Practical finite time adaptive robust flight control system for quad-copter UAVs, Aerospace Science and Technology, doi: 10.1016/j.ast.2020.105708.
[15] Bhat, S. P.; Bernstein, D. S., Finite-time stability of continuous autonomous systems, SIAM.J, Control Optim., 38, 3, 751-766 (2000) · Zbl 0945.34039
[16] Moulay, E.; Perruquetti, W., Finite time stability and stabilization of a class of continuous systems, J. Math. Anal. Appl., 323, 2, 1430-1443 (2006) · Zbl 1131.93043
[17] Moulay, E.; Perruquetti, W., Finite time stability conditions for non-autonomous continuous systems, Int. J. Control, 81, 55, 797-803 (2008) · Zbl 1152.34353
[18] Huang, X.; Lin, W.; Yang, B., Global finite-time stabilization of a class of uncertain nonlinear systems, Automatica, 41, 5, 881-888 (2005) · Zbl 1098.93032
[19] Liu, H. T.; Wang, X. Z.; Zhang, T., Robust finite-time stability control of a class fo high-order uncertain nonlinear sysytems, Asian J. Control, 17, 3, 1081-1087 (2015) · Zbl 1332.93295
[20] Yin, J.; Khoo, J. S.; Man, Z., Finite-time stability and instability of stochastic nonlinear systems, Automatica, 47, 12, 2671-2677 (2011) · Zbl 1235.93254
[21] Zhang, Z. Y.; Liu, X. P.; Zhou, D. H.; Lin, C.; Chen, J.; Wang, H. X., Finite-time stabilizability and instabilizability for complex-valued memristive neural networks with time delays, IEEE Trans. Syst., Man, Cybern.: Syst., 48, 12, 2371-2382 (2018)
[22] Shuai Sui, C. L.; Chen, Philip; Tong, Shaocheng, Fuzzy adaptive finite-time control design for nontriangular stochastic nonlinear systems, IEEE Trans. Fuzzy Syst., 27, 1, 172-184 (2019)
[23] Andrey Polyakov,Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Transactions on Automatic Control, 57(8)(2012) 2016-2010. · Zbl 1369.93128
[24] Zhang, Z. Y.; Liu, X. P.; Liu, Y.; Lin, C.; Chen, B., Fixed-time almost disturbance decoupling of nonlinear time-varying systems with multiple disturbances and dead-zone input, Inf. Sci., 450, 267-283 (2018) · Zbl 1448.93258
[25] Panathula, C. B.; Rosales, A.; Shtessel, Y.; Basin, M., Chattering analysis of uniform fixed-time convergent Sliding Mode Control, J. Franklin Inst., 354, 4, 1907-1921 (2017) · Zbl 1378.93031
[26] Lopez-Ramirez, F.; Polyakov, A.; Efimov, D.; Perruquetti, W., Finite-time and fixed-time observer design: Implicit Lyapunov function approach, Automatica, 87, 52-60 (2018) · Zbl 1378.93095
[27] Zheng, Z. W.; Feroskhan, M.; Sun, L., Adaptive fixed-time trajectory tracking control of a stratospheric airship, ISA Trans., 76, 134-144 (2018)
[28] Liu, J.; Zhang, Y. L.; Sun, C. Y.; Yu, Y., Fixed-time consensus of multi-agent systems with input delay and uncertain disturbances via event-triggered control, Inf. Sci., 480, 261-272 (2019) · Zbl 1451.93357
[29] Yang, H.; Jiang, B.; Cocquempot, V.; Zhang, H., Stabilization of switched nonlinear systems with all unstable modes: application to multi-agent systems, IEEE Trans. Autom. Control, 56, 2230-2235 (2011) · Zbl 1368.93580
[30] Shi, P.; Su, X. J.; Li, F. B., Dissipativity-based filtering for fuzzy switched systems with stochastic perturbation, IEEE Trans. Autom. Control, 61, 1694-1699 (2016) · Zbl 1359.93493
[31] Hardy, G. H.; Littlewood, J. E.; Polya, G., Inequalities (1952), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0047.05302
[32] Qian, C.; Lin, W., Non-Lipschitz continuous stabilizers for nonlinear sysytems with uncontrollable unstable linearization, Syst. Control Lett., 42, 3, 185-200 (2001) · Zbl 0974.93050
[33] Muralidharan, A.; Pedarsani, R.; Varaiya, P., Analysis of fixed-time control, Transport. Res. BMeth., 73, 81-90 (2015)
[34] Zheng, Z. W.; Feroskhan, M.; Sun, L., Adaptive fixed-time trajectory tracking control of a stratospheric airship, ISA Trans., 76, 134-144 (2018)
[35] Ni, J.; Liu, L.; Liu, C.; Hu, X.; Li, S., Fast fixed time nonsingular terminal sliding mode control and its application to chaos suppression in power system, IEEE Trans, Circuits Syst. II Exp. Briefs, 64, 2, 151-155 (2017)
[36] Tong, S. C.; Zhang, L. L.; Li, Y. M., Observed-based adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large-scale systems with dead zones, IEEE Trans. Syst., Man, Cybern.: Syst., 46, 1, 37-47 (2016)
[37] Li, Y. M.; Li, K. W.; Tong, S. C., Finite-time adaptive fuzzy output feedback dynamic surface control for mimo nonstrict feedback systems, IEEE Trans. Fuzzy Syst., 27, 1, 96-110 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.